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Abstract 

The human brain is the most complicated biological organ. Despite the intensive 

research on the brain, it still remains a great mystery. Neurodegenerative diseases such as 

dementia are recognized as a major health problem and are becoming increasingly 

common at present time, particularly with aging population. This thesis investigates the 

problems and limitations of current approach of assessment and diagnosis for 

Alzheimer’s disease (AD), a major form of dementia, and presents a rapid and automatic 

method of cognitive assessment and disease diagnosis by processing the neuroimages and 

performing the statistical analysis.  

The neuroimage processing in this thesis is based on a set of fully automatic image 

processing algorithms and a digital brain atlas with accurate brain structures segmented 

and labeled, including the AD-specific structures. The image processing algorithms 

extract the brain areas from the neuroimages, detect the landmarks on the images, and 

segment the AD-specific structures from the images by using the digital AD-specific 

brain atlas. They are presented chapter by chapter in this thesis. The brain atlas is 

constructed based on a high resolution magnetic resonance imaging volumetric dataset by 

using a set of powerful and intelligent tools also presented in this thesis. 

The algorithms for automated brain extraction from structural and functional 

neuroimages are presented in the thesis. They include a domain knowledge based brain 

extraction algorithm for structural computed tomography images and a rapid cerebral and 

cerebellar region extraction from functional positron emission tomography (PET) images. 



 xii 

To increase the accuracy of PET images registration into the atlas space by the piecewise 

linear transformation, a new landmark is defined in this thesis to extend the existing 

Talairach landmarks, a set of commonly used landmarks in human brain registration, in 

order to include the cerebellum into the space. The cerebellum is an important brain 

structure for our research due to its role as an intensity normalization reference. The 

algorithm for automatic detection of the new landmark as well as the other Talairach 

landmarks is presented. 

According to the linkage between the AD diagnosis and cognitive scores like mini 

mental state examination, and the correlation between the cognitive scores and the 

changes of several specific brain structures on the neuroimages, the statistical models of 

stepwise regressions and discriminant classification are performed on the regions of AD-

specific structures to calculate the cognitive scores and classify the experiment subjects 

into different diagnostic groups automatically. The approach has been applied to 

hundreds of cases and shown promising results. This is the first effort to quantitatively 

calculate the cognitive scores by processing the neuroimages automatically. It provides an 

objective, efficient, less expensive, and extendable way for potential clinical diagnosis in 

the patients with dementia by the fully automatic computer programs. 
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Chapter 1 

Introduction 

This chapter provides a high-level overview of the research topic, a rapid and 

automatic atlas-assisted cognitive assessment and Alzheimer’s disease (AD) diagnosis by 

making use of neuroimages. It begins with a description of the background, the 

motivation behind the topic, and the objectives and target of the research. Then, it 

summarizes my novel research contributions to support the thesis. The chapter ends with 

a discussion on the organization of the rest of the thesis. 

1.1 Rationale and Motivation 

The human brain is the most complicated biological organ. Despite the intensive 

research on the brain, it still remains a great mystery. Neurodegenerative diseases are 

recognized as a major health problem and are becoming increasingly common at present 

time, particularly with aging population. The disease is a condition in which cells of the 

spinal cord or brain are lost and do not readily regenerate [Sigel et al., 2006]. The lost of 

spinal cells causes the problems with movements, such as ataxia; and the lost of brain 

cells affects memory and causes dementia. Dementia is a term to describe the symptoms 

of the illnesses which cause a progressive decline in a person’s memory, intellect, 
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rationality, and social skills. Usually the disease process begins a long period of time 

before symptoms are present and diagnosis is made. Therefore, early diagnosis of 

dementia becomes an important task for the patients and their families to plan for the 

future and educate themselves about the disease, even though there is no cure yet to stop 

the disease progress. 

As a major form of dementia, AD accounts for approximately two thirds of all 

dementia cases worldwide [Jalbert et al., 2008]. Since Dr Alois Alzheimer, a famous 

German pathologist, first described the characteristic abnormal brain changes of a patient 

who had died of an unusual mental illness in 1906, the disease is now known as 

Alzheimer’s disease [Berchtold and Cotman, 1998]. According to the website of World 

Health Organization (WHO), currently there are about 18 million people worldwide with 

AD. This figure is projected to nearly double by 2025 to 34 millions due to the aging 

population. In Australia, this figure is 220,050 people with dementia representing 1.06% 

of the total population in 2007. By 2030, it will have more than doubled to 465,460 

representing 1.88% of the population and by 2050 it will reach 731,030 or 2.77% of the 

population [Economics, 2005]. 

Currently, AD can be definitively diagnosed only after death by an examination of 

brain tissue in an autopsy [Koopman et al., 2009]. For living subjects, the steps in the 

diagnosis process of AD are 1) medical history assessment, 2) clinical examination, and 3) 

evaluation of memory and thinking abilities [Petersen, 2009]. The medical history 

assessment is done by clinicians to ask questions about the person’s overall health, past 

medical problems, ability to carry out daily activities, and changes in behavior and 

personality. The clinical examination includes the tests of blood, urine, or spinal fluid, 

and brain scans such as computed tomography (CT), magnetic resonance imaging (MRI), 
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or positron emission tomography (PET), etc. The memory and thinking evaluation is 

usually done by some score assessment systems to evaluate the abilities of memory, 

problem solving, attention, counting, and language [Estrada and Soto, 2009]. Due to the 

uncertainty and subjective judgments, the patients, who are having memory problems, are 

diagnosed as “possible AD” if the symptoms may be caused by another disease, or 

“probable AD” if no other cause for the symptoms can be found [Waldemar et al., 2006]. 

Since no symptoms are obvious during the early stages of the disease, it is still a 

challenging task for early diagnosis of this degenerated human brain disease which was 

found and described more than 100 years ago. However, neuroimaging techniques 

provide the possibility to investigate the human brains in vivo by a visual inspection or 

quantitative analysis with computer technologies. Therefore, the early detection of the 

brain changes in structure or function becomes possible. 

The initial motivation of this research was to make use of the neuroimaging 

techniques as the clinical diagnosis or even prediction of AD by applying computer 

technologies. Several neuroimaging modalities, such as CT, MRI, and PET, have been 

developed to study brain anatomy, function, and pathology [Allen et al., 2008; Johansen-

Berg, 2009]. They are also available for studying the brain in AD [Jack Jr et al., 2008]. 

The potential roles of neuroimaging in research for AD include cognitive assessment tool, 

a prediction of mild cognitive impairment (MCI), early diagnosis of AD, separation of 

AD from other forms of dementia, monitoring of disease progression, and monitoring 

response to therapies. Neuroimaging includes structural and functional imaging 

techniques [Frisoni, 2009]. The structural neuroimaging produces high quality images of 

brain structure, e.g. CT or MRI. They are recommended for the routine evaluation of AD, 

or are useful to quantify atrophy of the structures of interest or atrophy of whole brain 

[Fan et al., 2008]. Because structural changes usually occur late in the progress AD, 
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functional imaging modalities may have greater potential in detection of the disease 

earlier [Frisoni, 2009]. PET is one of the most popular scanning techniques in current 

neurological research to provide functional information about physiological and 

biochemical processes [Senda et al., 2002]. PET scans allow one to observe blood flow or 

metabolism in any part of the brain [Grafton et al., 1992; Weber et al., 2000]. The fluoro-

deoxy-glucose (FDG) is the most widely used PET tracer in the study of AD. In a FDG-

PET scan, the subject is injected with a very small quantity of radioactive glucose. Brain 

cells use glucose as fuel, and if they are more active, they will consume more of the 

radioactive glucose, and if less active, they will consume less of it [Habra et al., 2010; 

Kushner et al., 1987]. A computer uses the absorption data to show the levels of activity 

as a grey brain map, with one value (usually bright) indicating more active brain areas, 

and another value (usually dark) indicating less active areas. 

1.2 Objectives 

Numerous research papers on AD analysis based on neuroimages were published (the 

literature review is given in Chapter 2). Currently, their findings were discussed and 

validated at research stage only; the clinical AD diagnosis and assessment is still by the 

conventional approach, i.e. by medical history assessment and evaluation of memory and 

thinking abilities. It is a lack of the practical clinical trials of AD diagnosis and 

assessment based on neuroimaging techniques. Computer-based neuroimage processing is 

playing a key role in early detection and diagnosis of AD, and the intelligent methods and 

interactive tools are crucial for reliable medical systems. However, processing of 

neuroimages is a challenging problem due to 1) complicated brain anatomy and function, 

2) a variety of techniques for brain imaging, and 3) numerous algorithms for neuroimage 
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processing. It is becoming even more difficult in disease due to abundant abnormalities 

and diseases, and the ways of their depiction in diagnostic imaging. Atlas-assisted brain 

image processing [Gholipour et al., 2007; Nowinski, 2002] is one of major approaches for 

medical image analysis, and shows its clinical values in the applications, e.g. stroke 

detection and diagnosis [Nowinski et al., 2008]. It is a powerful approach to fuse data and 

synthesize results across subjects, time series of same subject, and even modalities. Since 

it is automated and repeatable, it would be more reliable and objective than current 

clinical diagnosis by only medical history assessment and interviews with patients. The 

use of the atlas allows researchers to compare and contrast these brain images captured 

from different time series of a patient or from different subjects.  

The target of this research is to propose an automated and objective approach for AD 

or MCI early diagnosis and severity assessment by processing neuroimages and 

performing statistical analysis, based on a digital brain atlas with labels of AD-specific 

structures (defined in Chapter 3). Therefore, the new three-dimension (3D) digital atlas is 

hereby constructed first. It is a powerful tool not only for AD early diagnosis and severity 

assessment, but also for possible applications such as disease progression monitoring and 

treatment monitoring. The proposed approach is designed and efficiently implemented 

based on several dedicated algorithms for analysis of neuroimages with AD and MCI. 

1.3 Contributions 

To support the thesis that delivers significant value to neuroimages processing and 

the diagnosis and assessment of AD and MCI, several novel research contributions in this 

thesis are summarized as follows: 
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- Algorithms for automated brain extraction from structural and functional neuroimages 

[Qian et al., 2009a; Qian et al., 2009b] 

The algorithm for automated brain extraction from CT images is developed to 

segment brain areas from CT volumetric data efficiently and accurately. Also, the 

algorithms for automated brain extraction from PET images and the separation of 

cerebral hemispheres are developed to obtain the brain areas for further processing 

such as landmark detection and data transformation.  

Due to the absence of anatomic information and various situations in CT images and 

low contrast and signal-noise ratio in PET images, algorithms for brain segmentation 

from those images face the problems of processing time, result accuracy, and user 

intervention. The algorithms for brain areas extraction presented in this thesis are fast, 

accurate, and fully automatic without any user intervention.  

The details of the algorithms are proposed in Chapter 5. 

 

- A set of landmarks is extended to include the cerebellum into the atlas space [Qian et al., 

2010a] 

The new landmark is defined as the cerebellum inferior (CBI), which is at the most 

inferior point of the cerebellum, to enclose the cerebellum into the Talairach space for 

a rapid Talairach transformation. After adding the new landmark, the whole brain is 

subdivided into 18 cuboidal regions including both cerebrum and cerebellum (as 

opposed to the original 12 cuboids) by 9 landmarks, which are 8 modified Talairach 

landmarks and CBI as well.  

The landmark of cerebellum is missing from the Talairach landmarks, but it is 

important for cerebellum extraction from the neuroimages to improve the accuracy 
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and transformation of neuroimages to Talairach space. A new landmark for 

cerebellum is introduced based on image processing and brain anatomical knowledge. 

The details of the new landmark definition are described in Chapter 6. 

 

- An algorithm for automated landmark detection from PET volumetric data [Qian et al., 

2010a] 

The algorithm detects the modified Talairach landmarks and the extended landmark 

CBI automatically for the subsequent transformation of PET images into the 

Talairach space.  

As a new landmark is introduced, a new algorithm for landmark detection on PET 

images is studied and investigated for the subsequent PET image transformation into 

Talairach space. 

The details of the algorithm are discussed in Chapter 6. 

 

- Tools for atlas construction [Qian et al., 2008] 

This is an interactive platform for brain segmentation and post-processing of 

segmented results. It is developed with functions for interactive segmentation, 

contour editing, 2D-3D correlation, marching sulci, and multiple dataset 

synchronization. A new brain atlas was constructed by making use of these functions. 

It has the accurate regions including AD firstly affected structures e.g. hippocampus, 

adjacent structures e.g. temporal gyri, and AD less affected structures e.g. cerebellum. 

It has 3D labels for all the structures of the brain in a high-resolution volumetric 

format. The details of the tools are presented in Chapter 4. 
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- An assessment method to evaluate and diagnose the experiment subjects [Qian et al., 

2010b] 

This method is based on the extracted regions of interest from PET images as well as 

the diagnosis information of experiment subjects. The regions are the AD-specific 

structures. The statistical models of the stepwise linear regression and discriminant 

classification are performed to generate the regression equations and discriminant 

functions to evaluate the cognitive severity of the experiment subjects and classify 

them into normal subjects or patients with AD or MCI. This is the first effort to 

automatically calculate the cognitive scores by processing the neuroimages and give 

the promising results.  

The method presents a cognitive assessment approach from neuroimages 

automatically, instead of manual assessment which is time-consuming, subjective, 

and costly. 

The details of the method and the results are presented in Chapter 7. 

 

1.4 Thesis Organization 

The rest of this thesis is organized as follows.  

• Chapter 2 discusses the clinical diagnosis and assessment approaches for AD and 

MCI and the markers of AD on neuroimages. It also presents the state-of-the-art 

methods and algorithms popularly used for analysis of AD neuroimages, image 

processing methods for structural and functional neuroimages, digital brain 

atlases for different applications, statistical analysis of AD assessment and 

diagnosis from neuroimages.  
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• Chapter 3 gives an overview of the proposed research work in this thesis and the 

materials used in this research. The proposed research work includes the 

introduction of the components of atlas-based approach, and the implementation 

of AD assessment from neuroimages. The details of each component are 

introduced in the subsequent chapters. 

• Chapter 4 presents a new brain atlas constructed by a set of interactive and 

intelligent construction tools.  

• Chapter 5 discusses the design and implementation of the automated brain 

extraction methods from neuroimages including structural CT images and 

functional PET images.  

• Chapter 6 extends the Talairach landmarks to include a new landmark for more 

accurate transformation of PET images into the standard Talairach space.  

• Chapter 7 statistically analyzes the data extracted from the PET images based on 

the atlas to generate the regression equations and discriminant functions to assess 

the cognitive scores of experiment subjects and classify them into AD, MCI, and 

normal groups.  

• Finally, Chapter 8 provides the research summary and discusses the directions for 

future work. 
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Chapter 2 

Related Work and Background 

This chapter provides the state-of-the-art literature review of related work, including 

the clinical assessment and treatment for Alzheimer’s disease (AD), roles of structural 

and functional neuroimaging in AD assessment and diagnosis, digital brain atlases and 

their applications in neuroimage processing, automated methods of brain extraction from 

neuroimages, and statistical analysis methods for medical image data processing and AD 

diagnosis. It ends with a summary of related work. 

2.1 Clinical AD Assessment and Treatment 

For any disease treatment, early diagnosis is very important. AD is a progressive 

neurodegenerative disorder associated with slow impairment in cognition, function, and 

behavior. Pathologically, AD damages large cortical neurons initially in the temporal 

lobes and later in the remaining neocortex and association areas [Petrella et al., 2003]. 

Unfortunately, the cause of AD is unknown yet, and there is no single test to identify AD. 

The diagnosis of AD can only be confirmed by examination of the brain tissue, i.e. by 

autopsy.  
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2.1.1 Clinical AD Assessment 

The AD progress has a few steps from mild AD to moderate AD and then to severe 

AD. Usually the early stage of AD is also called mild cognitive impairment (MCI), which 

is a diagnosis given to those who have cognitive impairments but do not interfere 

significantly with their daily activities. Currently, the clinical examinations like brain 

scans or laboratory tests only are the aided approaches to rule out other causes of 

dementia-like symptoms. The diagnosis of AD in a living subject is made by careful 

clinical consultations by the dementia severity assessment systems, e.g. mini mental state 

examination (MMSE) [Folstein et al., 1975] and clinical dementia rating (CDR) [Morris, 

1993] (see the appendixes for details). 

The MMSE is the most commonly used score system to assess cognitive changes in 

patients with dementia. The MMSE covers five areas: orientation, registration, attention 

and calculation, recall, language and praxis. A series of questions and tests are answered 

by the patients, and then the maximum score of 30 points is given to the correct answers. 

Table 1 lists the range of scores to assess the cognitive function of a patient. Although it 

is a simple way to quantify changes in cognitive function and has been translated into 

many languages, it has several limitations [Crum et al., 1993]: 1) education levels of 

different patients may affect the scores, 2) it is not sensitive in detecting mild dementia, 

and 3) abnormalities are not specific for AD or other dementia (refer to Appendix A for 

more details). 

Table 1. Mini mental state examination 

MMSE Score 24-30 18-23 0-17 

Interpretation Normal MCI AD 
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The CDR is another scale used to characterize six domains of cognitive and 

functional performance applicable to AD and related dementias. They are memory, 

orientation, judgment and problem solving, community affairs, home and hobbies, and 

personal care. The necessary information to make each rating is obtained through an 

interview of the patient and/or a family member by filling a CDR table (Table 2) to guide 

the clinician in making appropriate ratings based on interview data and clinical judgment. 

In addition to ratings for each domain, an overall CDR score may be calculated [Morris, 

1993] through dividing the domains into a primary category (Memory) and the secondary 

category (other 5 domains). For example, in Table 2, the primary category is 0, and 5 

secondary categories are greater than 0, so the global CDR is presented as 0.5 (refer to 

Appendix B for more details). This global score is useful for characterizing and tracking a 

patient's level of impairment or dementia. 

 
Table 2. Clinical dementia rating scores based on six domains 

 0 0.5 1 2 3 

Memory √     

Orientation  √    

Judgment and Problem Solving   √   

Community Affairs   √   

Home and Hobbies   √   

Personal Care    √  

Global CDR  ○    

Interpretation None Questionable Mild Moderate Severe
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2.1.2 Clinical AD Treatment 

Unfortunately, there is no cure for AD at present. The disease cannot be stopped or 

reversed back by any treatment. The primary goals of treatment for AD are to improve 

the quality of life for the patients. Typically there are three approaches:  

- slowing the progression of cognitive decline and treating specific symptoms with drug 

therapies. There are some drugs currently being used to temporarily improve mental 

function and treat secondary symptoms such as depression and anxiety. They cannot 

stop the disease but can slow the progression of symptoms on some people. 

- managing the behavioral symptoms to improve functioning and reduce behavioral 

problems by non-drug approaches or prescription drugs. 

- support and education for the family. It can enable a person with dementia and his/her 

family to receive help in understanding and adjusting to the disease and to prepare for 

the future in an appropriate way, including financial and living arrangements and 

finding aids and services from the communities and learn effective ways of interacting 

with the person with dementia. 

2.2 Roles of Structural Neuroimaging in AD 

Brain structures are studied and identified as more-affected or less-affected by AD, 

by processing and analysis of the neuroimages generated by structural neuroimaging 

techniques like computed tomography (CT) and magnetic resonance imaging (MRI). This 

section gives a brief introduction of human brain structures and the atrophies of whole 

brain or several anatomical brain structures affected by AD. 
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2.2.1 Human Brain Structure 

The human brain is the center of the human nervous system and is a highly complex 

organ. The human brain has three major structural components: cerebrum, cerebellum, 

and brainstem shown in Figure 1. The cerebrum is the largest part of the human brain, 

associated with higher brain function such as thought, action, intelligence, and reasoning.  

The cerebral cortex consists of several lobes: the frontal lobe, parietal lobe, occipital 

lobe, temporal lobe, and insular lobe. The frontal lobe is associated with reasoning, 

planning, parts of speech, movement, emotions, and problem solving. The parietal lobe is 

associated with movement, orientation, recognition, perception of stimuli. The occipital 

lobe is associated with visual processing. The temporal lobe is associated with perception, 

auditory, memory, and speech. And the insular lobe is a small triangular area on the 

medial surface of the lateral sulcus; it can be seen in the intact brain only by separating 

the frontal and parietal lobes from the temporal lobe [Solms and Turnbull, 2002]. The 

cerebellum, or "little brain", is similar to the cerebrum in that it has two hemispheres and 

has a highly folded surface or cortex. This structure is associated with regulation and 

coordination of movement, posture, and balance. 

The hippocampus and amygdala are the first affected brain structures inside the 

cerebrum by AD progress [Braak and Braak, 1991; Minoshima et al., 1997], shown in 

Figure 2. The hippocampus is a major component of the human brains. It belongs to the 

limbic system and plays important roles in long-term memory and spatial navigation. 

Like the cerebral cortex, it is a paired structure located inside the medial temporal lobe, 

beneath the cortical surface [Amunts et al., 2005]. The amygdala is located deep within 

the medial temporal lobes of the brain. It is considered part of the limbic system [Amunts 
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et al., 2005]. The atrophy of whole brain or AD-affected structures including 

hippocampus and amygdala is an early marker of the disease. 

 
Figure 1. Major parts of human brain 

(adapted from the website of Children's Hospital Central California, 

http://www.childrenscentralcal.org) 

 
Figure 2. Hippocampus and amygdala 

(adapted from the website of Bioasis Technologies Inc, http://blog.bioasis.ca) 
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2.2.2 Global Brain Atrophy on Structural Neuroimages 

Structural neuroimaging such as MRI is a non-invasive technique to render images of 

brain inside the skull. Measurement of brain atrophy is proposed by various groups as an 

approach of processing MRI images of AD patients. Atrophy of the brain grey matter was 

reported as 2.7% per year in AD patients compared to 0.5% in normal aging [Chan et al., 

2001]. Another report presented different figures: the annual volume loss of grey matter 

in normal aging is less than 1% and the rates as high as 4% occur in early AD [Ashburner 

et al., 2003]. However, global brain atrophy also occurs due to normal aging and lacks the 

specificity to the disease. Besides global brain atrophy, several brain structures were 

measured and reported on rate of atrophy too. 

2.2.3 AD-affected Structures on Structural Neuroimages 

The structures within the medial temporal lobe are the first to be affected by 

pathology in AD [Braak and Braak, 1991; Minoshima et al., 1997]. They are 

hippocampus, amygdala, entorhinal cortex, and hippocampal gyrus. The medial temporal 

lobe atrophy in patients with AD was confirmed by several MRI studies [Frisoni et al., 

1999; Henry-Feugeas, 2007; Jack Jr et al., 1997] as well as autopsy-confirmed AD 

[Whitwell et al., 2008]. Figure 3 shows the cerebral lobes: the frontal lobe, parietal lobe, 

occipital lobe, and temporal lobe. The temporal lobes are located at the both sides of the 

cerebrum. Figure 4 shows the temporal lobe which is divided into superior, medial and 

inferior parts. The red line is the superior temporal sulcus, which divides the superior 

temporal gyrus (peach) from the middle temporal gyrus (lime). The blue line is the 

inferior temporal sulcus, which divides the middle temporal gyrus from the inferior 

temporal gyrus (lavender). 
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Figure 3. The cerebral lobes 

(adapted from the website of Elements4Health, http://www.elements4health.com) 

 

 
Figure 4. The temporal lobes 

Superior (peach), medial (lime), and inferior (lavender) (adapted from the website of fMRI 4 

Newbies, http://psychology.uwo.ca/fmri4newbies) 
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In cross-sectional and longitudinal studies, the hippocampus has shown an increased 

rate of atrophy in AD patients (4-6% per year) compared to matched control (1-2% per 

year) [Jack et al., 2000; Jack Jr, 1998; Laakso et al., 2000]. The atrophy of the 

hippocampus happens early in the development of AD [Chetelat and Baron, 2003; Teipel 

et al., 2003], and is an early mark present before dementia onset [Fox et al., 1996; Jack et 

al., 1999; Kaye et al., 1997]. In mild AD, the affected regions spread into the adjacent 

inferior temporal, and then the prefrontal cortex and other brain regions in later stages of 

the disease [Minoshima et al., 1997].  

2.3 Roles of Functional Neuroimaging in AD 

In this section, functional MRI (fMRI) and positron emission tomography (PET) are 

discussed as well as glucose metabolism reduction and AD imaging with fluoro-deoxy-

glucose (FDG) PET. 

2.3.1 fMRI and PET 

fMRI measures the change in blood flow related to neural activity in the human brain. 

It is one of the most recently developed forms of neuroimaging [Amaro, 2006]. Since the 

early 1990s, fMRI has come to dominate the brain mapping field due to its relatively low 

invasiveness, absence of radiation exposure, and relatively wide availability. 

Figure 5 shows an example of fMRI images which are merged with a MRI image 

(Figure 5a) and a 3D display of a brain surface (Figure 5b). fMRI plays a role of 

comparing mild AD and healthy elderly with processing of semantic and phonological 

information [Saykin et al., 1999]. It may also be useful in confirming a memory disorder 
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diagnosis and detecting individuals with initial dysfunction in learning as a result of AD 

[Kato et al., 2001]. A fMRI study reported that MCI and AD patients have less medial 

temporal lobe activation on the memory task than the normal subjects [Townsend and 

Cherry, 2001]. 

(a) 

(b) 

Figure 5. Functional magnetic resonance imaging 

Merged with (a) a MRI image and (b) a 3D display of brain surface 
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(a)  

(b)  

(c) 

Figure 6. Positron emission tomography 

(a) original image; (b) inversion image; (c) color mapped 
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PET is a powerful non-invasive tool used to study the biochemistry and physiology of 

the working brain. It measures the metabolic activity and neurotransmission of nerve cells 

to produce a three-dimensional (3D) image of functional processes in the brain [Senda et 

al., 2002]. PET scans provide the images to observe blood flow or metabolism in any part 

of the brain. The FDG is the most widely used PET tracer in the study of AD.  

 

The FDG-PET neuroimaging and its role in diagnosing AD and MCI, and predicting 

the progression from MCI to AD have been recently reviewed [Borrie, 2007; Foster et al., 

2007; Mosconi, 2005; Petrella et al., 2003; Ryu and Chen, 2008; Zakzanis et al., 2003]. 

The reviews indicate that FDG-PET becomes a standard technique to measure glucose 

metabolism within AD-affected areas or within whole brain, and also becomes a tool to 

evaluate the treatments for patients in neurological diseases. Figure 6 shows an example 

of glucose metabolism PET image (Figure 6a), its inversion (Figure 6b), and the color 

mapped image (Figure 6c) for more apparent inspection, respectively. The brain cells 

give bright value in the image if they are more active and show dark in the image if they 

are less active shown in Figure 6a. 

2.3.2 Glucose Metabolism Reduction in PET 

Patients with AD have characteristic reductions in glucose metabolic measurements 

of regional brain activity, which are progressive and correlate with dementia severity 

[Mosconi et al., 2007]. The reduced glucose metabolism was found in AD patient FDG-

PET images in several areas which are correlated with the AD-affected structures on MRI 

images. The correlation between severity of cognitive impairment and extent of 
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hypometabolism was confirmed [Mazziotta et al., 1992]. The neuropathological diagnosis 

with FDG-PET images is even reported that it is superior to the diagnosis with clinical 

examination [Foster et al., 2002]. PET scans are abnormal even when symptoms of AD 

are very mild or even at MCI stage [de Leon et al., 2001; Matsuda, 2007; Minoshima et 

al., 1997; Silverman et al., 2001]. Thus PET may be useful in early diagnosis of MCI, or 

differentiating neurological disease from other causes of behavioral and cognitive 

dysfunction [Gilman et al., 2005; Kerrouche et al., 2006]. 

FDG-PET provides quantitative estimates of the local cerebral metabolic rate of 

glucose. There are several studies reported that the glucose hypometabolism of the medial 

temporal lobe was found from PET [Hunt et al., 2007; Ishii, 1996; Jagust et al., 2006; 

Jagust et al., 1993], and confirmed in patients with pathologically verified dementia 

[Hoffman et al., 2000]. A longitudinal study demonstrated that the patients with AD had 

significantly lower glucose metabolism than healthy comparison subjects in parietal, 

temporal, occipital, frontal, and posterior cingulate cortices [Alexander, 2002]. Since 

many reports have given the same conclusions of glucose metabolism reduction in those 

affected regions from AD patient FDG-PET images, FDG-PET imaging is receiving more 

and more attention because it may precede structural changes in AD.  

2.3.3 FDG-PET Image Processing 

The visual inspection of glucose metabolic PET images has to be done by 

professionals or experts. It is not only time-consuming for numerous cases but also 

inconsistent and subjective for different investigators. In the past decades, computer 

technologies were rapidly developed in computing power, imaging technology, and 

algorithm development. It becomes possible to have automatic or semi-automatic 
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methods to analyze images in order to reduce the inconsistence by visual inspection and 

increase the performance.  

It is important to establish a standardized workflow for processing and analysis of the 

imaging data, for example the preprocessing steps to enhance the data include image 

intensity homogeneity-correction and normalization. Usually computer software needs a 

few steps to analyze FDG-PET images. They are normalization of images, registration of 

different cases or modalities, spatial transformation of images into dimensions of a brain 

template such as the Talairach atlas, segmentation of regions of interest, and analysis of 

comparing individual images with template images or the baseline state of same subject. 

Since PET images lack precise anatomical landmarks because of a low signal-noise 

rate and low contrasts between anatomical structures, it is usually difficult to identify 

anatomical regions of interest in PET images. The statistical analysis methods and 

clustering analysis methods are usually applied for image processing. For FDG-PET 

images, the calculation of absolute metabolic rates needs blood samples [Takagi et al., 

2004]. Its cost is high and its quantification procedure is too complicated. Therefore, a 

non-invasive analysis method has become a standard approach. It normalizes 

radioactivity distribution in a region to a reference region (e.g. the cerebellum) or the 

global brain to avoid the collection of blood samples and complicated calculation. 

As neuroimages are typically very large (millions of voxels), the data reduction 

methods are applied to reduce the computational cost before the statistical analysis. They 

are roughly divided into two groups: voxel-based methods and region-of-interest (ROI) 

based methods. The former considers each voxel as a separate entity for statistical 

analysis, and the latter focuses on particular areas of the brain to summarize the massive 

amounts of data in an area into a single number for each ROI in the brain, for example, 
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the average value of all voxels within the region. The most commonly cited software 

packages for performing voxel-based analysis are the statistical parametric mapping 

(SPM) [Friston et al., 1995] method and stereotactic surface projections (SSP) method 

[Ishii et al., 2001].  

SPM is open-source software, and is based on MATLAB platform. It is mostly used 

for analyzing metabolic rates of glucose, and widely applied to PET data and their 

longitudinal analysis. The software of SPM (http://www.fil.ion.ucl.ac.uk/spm/) has 

modules of realignment, normalization, smoothing, segmentation, and statistics. The 

realignment module aligns a time-series of images acquired from the same subject to the 

first image which is selected as a reference by using a least squares approach and a six 

parameter spatial transformation (rigid transformation). The normalization module selects 

template e.g. MNI from Montreal Neurological Institute, to align images to a standard 

space. The clustering methods are used to segment grey matter, white matter and 

cerebrospinal fluid from the brain. The statistical module applies hypothesis tests like t-

test and F-test. 

Figure 7 shows an example of SPM analysis result of neuroimages. Statistical 

parametric map in three orthogonal projections (sagittal orientation in Figure 7a, coronal 

orientation in Figure 7b, and axial orientation in Figure 7c) shows voxels where less 

activities (darker areas) in brain areas. There are many reports which applied SPM 

software as their research tool for FDG-PET images. For instance, SPM was applied to 

statistically analyze the predefined regions of interest [Perneczky et al., 2006], to measure 

the glucose update [Brenner et al., 2005], to visually inspect the glucose metabolic PET 

images by experts [von Borczyskowski et al., 2006], to test verbal and nonverbal 

semantic memory in AD patients [Zahn et al., 2004], and to differentiate other dementia 
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from AD [Okamura et al., 2001]. In addition, the differences between morphologic and 

functional changes in the same patients with mild AD were investigated by using SPM 

[Ishii et al., 2005], the monitoring on effects of treatment was determined by SPM [Teipel 

et al., 2006], and the study to compare the overall glucose metabolism between early 

onset and late onset AD was also present by using SPM analysis [Kim et al., 2005]. 

 

 
Figure 7. An example of SPM results 

 

SSP is another voxel-based approach highly cited by other researchers in processing 

of FDG-PET images [Minoshima et al., 1995]. The approach has several steps: 1) 

analysis of glucose metabolic PET images by using an anatomical transformation to the 

uniform shape of a standard stereotactic brain template; 2) each image set is realigned to 

the stereotactic coordinate system first, and then the difference in an individual’s brain 

size is removed by a linear scaling method [Minoshima, 1994]; 3) regional anatomical 

differences are normalized by a nonlinear warping technique [Minoshima, 1994]; 4) 
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regional metabolic information was extracted from each image set and then compared to 

the normal database by means of a z-score on a pixel-by-pixel basis; 5) a normal database 

was created by averaging extracted datasets of the normal subjects; and 6) any significant 

metabolic changes are represented in a 3D surface projection view for visual inspections.  

Though SSP approach has evidence to be more effective than the standard axial 

display in FDG-PET images, unfortunately it may not represent subcortical structures as 

well as white matter. However, it has been successfully applied to improve visual 

interpretation of PET images [Burdette et al., 1996], to diagnose early onset of mild AD 

[Ishii et al., 2006], and to differentiate other dementia from AD by analysis of FDG-PET 

images [Kono et al., 2007]. 

There are several other approaches mentioned in different reports. A method of 

dynamic PET images segmentation based on a similarity metric is presented [Brankov 

and Wernick, 2003], a clustering algorithm depending on the shape of the time signal 

rather than distance was proposed and compared with other clustering algorithms such as 

k-means [Johnson and Wichern, 1988] and Gaussian mixture approach [McLachlan and 

Krishnan, 1997].  

Basically the voxel-based approaches such as SPM and SSP typically applied to the 

applications which need the analysis of whole brain, but they are usually computationally 

costly in comparing that of ROI-based approaches. It may face difficulties to study 

accurately small regions such as the hippocampus in atrophic brains. Since the linkage 

between AD and certain areas of the brain is commonly recognized, the ROI-based 

methods are more efficient for statistical analysis. They are applied to both structural 

medical images [Jack et al., 2000] and functional medical images [McColl et al., 1994]. 

One of the ROI-based methods is atlas-assisted neuroimage processing. 
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2.4 Talairach Atlas and Landmarks 

Atlas-assisted operations on medical images of human brain are widely applied to 

image segmentation [Carmichael et al., 2005; Lawes et al., 2008], data normalization 

[Buckner et al., 2004], and localization analysis [Bhanuprakash et al., 2006; Hu et al., 

2005b; Nowinski et al., 2008], especially for the PET images with a poorer spatial 

resolution and lower signal-noise ratio than other modalities like MRI or CT. Numerous 

printed and electronic brain atlases have been developed [Nowinski, 2001a; Toga et al., 

2006]. Talairach and Tournoux introduced a brain atlas [Talairach and Tournoux, 1988], 

which is commonly used as a reference brain and a gold standard in human brain 

mapping. Detailed anatomical description including Brodmann’s areas provided in this 

atlas is referred when researchers report the location of brain areas in the stereotactic 

space. However, the Talairach atlas has several limitations. It has partial inconsistencies 

between orthogonal plates, variable slice distances, and does not completely represent the 

in vivo anatomy of subjects. 

2.4.1 Talairach Space and Coordinates 

The Talairach space is a well-defined common coordinate reference system of human 

brain. The Talairach coordinate system is used to describe the location of brain structures 

independent from individual differences in the size and overall shape of the brain. It is 

defined by a set of landmarks including two subcortical landmarks and six cortical 

landmarks. Distances in Talairach coordinates are measured from one of the landmarks, 

the anterior commissure, as origin. Talairach coordinates is that the right hemisphere has 

positive X values, the anterior part has positive Y values, and the superior part has 

positive Z values; with the anterior commissure being at coordinate (0, 0, 0). 
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Figure 8. An axial slice of digitized original Talairach atlas 

 

2.4.2 Original Talairach Landmarks 

The original Talairach landmarks contain two subcortical landmarks (internal 

landmarks): anterior commissure (AC) and posterior commissure (PC), and six cortical 

landmarks (external landmarks): left (L), right (R), anterior (A), posterior (P), superior 

(S), and inferior (I) [Talairach and Tournoux, 1988]. AC is the point of intersection of the 

lines passing through the superior edge of the anterior commissure and the posterior edge 

of the anterior commissure. PC is the point of intersection of the lines passing through the 

inferior edge of the posterior commissure and the anterior edge of the posterior 
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commissure. The external landmarks are the points on the cortex. They are: the most 

superior point of the parietal cortex (S) and the most inferior point of the temporal cortex 

(I); the most anterior point of the frontal cortex (A) and the most posterior point of the 

occipital cortex (P); the most lateral points (left and right) of the parietotemporal cortex 

(L and R). Each cortical landmark is identified by three coordinates on axial, coronal and 

sagittal orientations. Figure 8 shows an axial slice of the digitized original Talairach atlas. 

2.4.3 Modified Talairach Landmarks 

The original Talairach landmarks have some limitations and several problems. For 

examples, the original brain atlas does not contain all of the landmarks, inconsistency of 

the landmark definitions and their locations in the atlas, AC and PC are located beyond 

their own structures. In addition, the cortical landmarks are not defined in a constructive 

way. A set of modified Talairach landmarks, conceptually equivalent to the original 

Talairach landmarks, was introduced [Nowinski, 2001b] to overcome the problems and 

become more constructive by computer program. The modified Talairach landmarks are 

automatically identified on magnetic resonance neuroimages [Bhanuprakash et al., 2006; 

Hu et al., 2005b], and applied to the Talairach transformation and other atlas-assisted 

automatic interpretations and applications [Hu et al., 2005b; Nowinski et al., 2008].  

The modified Talairach landmarks define the AC and PC within the midsagittal plane 

(MSP), and are the central points of the anterior commissure and posterior commissure 

respectively. The landmarks A, P, L and R are identified from the AC-PC plane passing 

through both the AC and PC; the landmark I is identified on a coronal plane passing 

through AC (VAC); and the landmark S is identified on another coronal plane passing 

through PC (VPC). The whole brain is subdivided into 12 cuboids. Figure 9 gives the 
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modified Talairach landmarks on axial (Figure 9a), coronal (Figure 9b), and sagittal 

(Figure 9c) MRI images. However, the cerebellum is not included into the modified 

Talairach landmarks. 

 

(a) 

(b) 

(c) 

Figure 9. Modified Talairach landmarks 

The landmarks on (a) axial, (b) coronal, and (c) sagittal orientations 
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2.5 Automated Brain Extraction Methods 

Brain extraction from neuroimages is a crucial component in neuroimage analysis 

systems and medical imaging applications. It is usually a first and essential step to 

subsequent image processing and further analysis, such as visualization of brain cortex, 

registration with other neuroimages, further segmentation of brain structures, and 

morphometry. Segmentation methods are highly dependent on image acquisition 

modality. This section discusses the state-of-the-art methods and algorithms of brain 

extraction from CT, MRI and PET neuroimages. 

2.5.1 Brain Extraction from CT Neuroimages 

Besides the intensity thresholding, which is often used as an initial step of image 

processing operations [Pham et al., 2000], the segmentation methods of CT images 

include region growing [Mulenbruch et al., 2006; Pohle and Toennies, 2001; Sandor et al., 

1991], model-based active contour [Chertkow and Black, 2007; Luo, 2006; Pardo et al., 

1997], combination of statistical clustering and model-based segmentation [Lei and 

Sewchand, 1992], watershed transformation [Wegner et al.], atlas-based segmentation 

[Ding et al., 2005], machine learning-based approach [Akselrod-Ballin et al.], and 

knowledge-based segmentation [Brown et al., 2000; Sonka et al., 1994]. A comparison of 

different techniques using wavelet, ridgelet, etc. in CT images is available [Dettori and 

Semler, 2007]. 
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(a) 

(b)  

Figure 10. Examples of CT images 

(a) a superior slice; (b) an inferior slice 
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For CT head images, most of the above mentioned segmentation methods are also 

applicable. Region growing [Sandor et al., 1991] works fine for the superior (dorsal) 

slices which usually have a closed bright area on two-dimension slice CT images, see 

Figure 10a. However, for the most inferior slices, as shown in Figure 10b, the method 

could face difficulty in choosing the seed point automatically and grow outside the crania. 

Contour extraction [Soltanian-Zadeh and Windham, 1997] requires user interaction to 

specify the threshold at different regions. Fuzzy C-means clustering [Hu et al., 2005a] 

needs several initial parameters, e.g., the number of clusters. The rule-based approach 

[Matesin et al., 2001] requires prior knowledge and is time consuming. The combination 

of K-mean clustering, feature extraction, and neural network classification [Loncaric and 

Kovacevic, 1997] resulted in a complex and difficult to use system. 

 

2.5.2 Brain Extraction from MRI Neuroimages 

MRI images provide more detailed information of anatomic structures, e.g. cortical 

gyri and sulci, than CT. However, it may be more difficult for MRI scans to be accurately 

segmented than CT scans. There are a number of methods for brain extraction from MRI 

proposed over a few past decades. These methods include histogram-based thresholding 

and morphological operations [Shan et al., 2002; Stokking et al., 2000], connected 

component analysis [Lemieux et al., 1999], region growing and edge detection [Xuan et 

al., 1995], atlas-guided brain structure identification [Akselrod-Ballin et al., 2006], 

model-based or knowledge-guided active contour method [Shan et al., 2005], automatic 

and adaptive brain morphometry [Hu et al., 2008], and hybrid models [Boesen et al., 2004; 

Chupin et al., 2007]. In the scientific community, there are several downloadable highly 
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cited software packages for brain extraction and further segmentation of brain structures. 

They are: 

• FMRIB software library (FSL) - a library of analysis tools for neuroimages [Jack 

et al., 2004] 

• BrainSuite - a MR image analysis tool [Shattuck and Leahy, 2002] 

• Statistical parametric mapping (SPM) - a software toolkit for the analysis of 

neuroimages [Friston et al., 1995] 

• FreeSurfer - a set of tools for subcortical segmentation, reconstruction of the 

cortical surface and overlay of functional data onto the reconstructed surface 

[Dale et al., 1999]. 

To evaluate the methods of automated brain extraction, above four software packages 

were downloaded and executed. Table 3 lists these packages with related information 

such as version, web address to download, the tested components with parameters, and 

the execution time. FSL was running under free software WMware Player available at 

http://www.vmware.com/products/player/. The player is a virtual machine on Windows 

operating system. SPM is running with MATLAB, a numerical computing environment 

and programming language.  

Currently the most automated methods reported their accuracy by comparison of 

segmented results with some ground truth. This is done by pixel-by-pixel comparison 

without applying any anatomical knowledge. Therefore, if the ground truth is only 

visually correct in images but not anatomically correct by knowledge, the comparison 

may only make sense in pure image processing terms. Besides, in some software 

packages it is difficult to check the segmentation quality without mapping it to the origin, 

e.g. in FreeSurfer. 
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Table 3. Automated methods evaluation 

 Software Version & URL Tested Components Parameters Execution 
Time 

1 FMRIB 

software 

library 

(FSL) 

Version 4.0 

www.fmrib.ox.ac.uk 
- BET (brain extraction 

tool) 

- FAST (automated 

segmentation tool) 
 

- f = 0.5 

- g = 0 

- type = T1 

7 mins 

2 BrainSuite Version 2.0 

brainsuite.usc.edu 
- BSE (skull stripping) 

- BFC (non-uniformity 

correction) 

- PVC (tissue 

classification) 

- Erosion 

Size = 2 
 

3 mins 

3 Statistical 

parametric 

mapping 

(SPM) 

Version SPM5 

www.fil.ion.ucl.ac.uk 
- Segment under 

‘Spatial Pre-

processing’ (brain 

segmentation) 

- CSF= 

Native 

Space 

22 mins 

4 FreeSurfer Version 4.2.0 

surfer.nmr.mgh.harvard

.edu 

- Preprocessing and 

skull stripping 

- Brain structure 

segmentation and 

surface generation  

- autorecon1 

- autorecon2 

15 hours 

 

There are a few reviews [Boesen et al., 2004; Klauschen et al., 2009] attempting to 

evaluate these software packages by measurement of segmented whole brains or brain 

structures and comparison with ground truth or gold standard. The selected data consisted 

of simulated datasets and some of real cases. BrainWeb [Cocosco et al.], an online 

interface to a 3D MR image simulated brain database which is available at 

http://www.bic.mni.mcgill.ca/brainweb, is widely selected to play such a role in 

providing different datasets with variations of parameters (e.g. noise level, slice thickness, 
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etc.), as well as the anatomical model (phantom). Another widely used online database is 

Internet Brain Segmentation Repository (IBSR) which is available at 

http://www.cma.mgh.harvard.edu/ibsr. IBSR provides manually guided expert 

segmentation results on simulated and real data for evaluation and development of 

segmentation methods. 

2.5.3 Brain Extraction from PET Neuroimages 

Due to a poor spatial resolution and a low signal-noise ratio of the PET images, 

automated brain extraction from those images is a challenging task. There are a few 

registration tools such as Analyze [Robb et al., 1990] and SPM [Friston et al., 1995], 

which include the components of brain extraction from PET images. They are applied to 

extract physiological information from PET images by registration with a brain template 

or another structural modality (e.g. MRI) which has anatomical information to be used as 

a reference. These tools need the user to load images and perform several steps on them 

for registration. There are also a few automated or semi-automated methods of brain 

extraction from PET images including thresholding [Mykkanen et al., 2000] that needs 

user interventions, cluster analysis and pattern classification methods [Koivistoinen et al., 

2004; Wong et al., 2002] which usually need input parameters. 

2.6 Statistical Analysis in AD Diagnosis 

The statistical analysis has been used in several neurological diseases such as emotion 

disorder [Kober et al., 2008] and anxiety-related disorder [Etkin and Wager, 2007]. In 

addition, it was performed to analyze the relationship between the AD diagnosis and the 

different score systems like MMSE and intelligence quotient [Kawano et al., 2000], the 
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relationship between the cognitive function and regional cerebral flow [Ushijima et al., 

2002], and the correlations between cerebral glucose metabolism and neuropsychological 

test [Lockwood et al., 2002]. However, the statistical analysis with different statistical 

models such as correlation test, regression analysis, neural network, and several 

classification methods, was often used to discover or verify the relationships or 

correlations between the cognitive scores and the changes detected from the neuroimages.  

The current clinical criterions only have a high sensitivity and specificity for AD 

diagnosis at middle or late stages of the disease [Petrella et al., 2003]. Thus, the new 

diagnosis of AD in patients with dementia at early stage of the disease becomes a 

challenging task and research topic for many researchers. This section focuses on the 

methods of early diagnosis of AD or MCI by the statistical analysis based on the results 

of neuroimage processing. 

The reviews of structural and functional neuroimaging roles in the diagnosis of AD 

can be found at [Chetelat and Baron, 2003] and [Borrie, 2007], respectively. PET is 

currently used as an assisting tool to clinical diagnosis, especially in differentiating AD 

from vascular dementia and other dementias such as frontal lobe dementia. The growing 

evidence has shown that PET would likely come to the forefront both as a diagnostic tool 

and as a prognostic tool [Frisoni, 2009; Petrella et al., 2003]. However, MRI is still the 

favorites of many researchers. 

The statistical models of t test, bootstrap procedure were applied on the hippocampus 

for group analysis and individual analysis, after the hippocampi were segmented 

automatically from the MRI images [Colliot et al., 2008]. Group differences in 

hippocampal volume were assessed by using t test, and bootstrap methods were used to 

obtain estimates of p values, the classification rate, sensitivity, and specificity. A p value 
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of less than 0.05 was considered as an indication of a significant difference. Each 

participant was assigned to the closest group by comparing the mean values of the groups 

and the participant. The results of the study gave 84% classification rate between the AD 

patients and normal controls, and 69% between the patients of AD and MCI. However, 

they require confirmation with larger groups of participants.  

Another method to identify individuals with MCI and AD from MRI images was 

presented by [Desikan et al., 2009]. Baseline volumetric T1-weighted MRI scans were 

examined using automated software tools to identify the volume and mean thickness of 

neuroanatomic regions. All MRI scans were processed using the FreeSurfer software 

package, and the neocortex of the brain on the MRI scans was then automatically 

subdivided into the regions of interest including the amygdala and hippocampus. The 

statistical analysis such as the logistic regressions was applied on the training data for 

entorhinal cortex thickness and volume. The study showed the results that the MMSE 

scores correlated with severity of atrophy and the extent of atrophy. 

A method of cortical thickness measurement from MR images as well as statistical 

analysis was proposed for early diagnosis of AD [Querbes et al., 2009]. The mean cortical 

thicknesses were compared between diagnosis groups of healthy controls, progressive 

MCI, stable MCI, and AD by a multiple analysis of covariance. A normalized thickness 

index was defined to be the prediction of the clinical diagnosis outcome. It distinguished 

stable MCI from progressive MCI, and predicted amnestic MCI to AD and compared it to 

the predictive values of the main cognitive scores at baseline. 

PET images were reported to differentiate AD from dementia with Lewy bodies 

[Gilman et al., 2005; Kono et al., 2007] and vascular dementia [Kerrouche et al., 2006]. 

Most of the papers have proposed the methods and algorithms to verify the correlations 
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between the cognitive severity and the structural or functional changes detected from the 

neuroimages. The cognitive scores such MMSE or CDR are widely used in clinical 

practice for the diagnosis of AD and MCI. The correlation of MMSE scores with brain 

structural changes have been reported in the literature. For examples, the high correlation 

in AD between MMSE scores and changes in temporal lobes was reported [Thompson et 

al., 2004]. [Duan et al., 2006] showed high correlation between cognitive impairment and 

selective white matter damage in AD, measured as a reduction of fractional anisotropy, 

particularly in the splenium of the corpus callosum. [Apostolova et al., 2006] investigated 

the correlation between MMSE scores and hippocampal volume changes. [Baxter et al., 

2006] showed high correlation in AD between MMSE scores and decrease of grey matter 

in the left temporal lobe. A strong correlation between MMSE scores and grey matter loss 

in several cortical regions was observed in clinical and pre-clinical AD [Apostolova et al., 

2006]. 

Cognitive scores are playing very important roles in the correlation with the changes 

of anatomical structures and functional regions, and diagnosis of dementia as well. 

However, so far there is still no quantitative assessment of cognitive scores based on the 

changes detected from the neuroimages. 

2.7 Summary 

Currently, clinical AD assessment and diagnosis in a living subject is based on 

medical history assessment and careful clinical consultations by the dementia severity 

assessment score systems. It is inefficient, inaccurate, and subjective. Usually the most 

commonly recognized symptom of AD is memory loss, such as difficulty in remembering 

what recently happened or learned. These earliest observable symptoms are often 
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mistakenly related to aging or stress. When the symptoms are more obvious and serious, 

such as difficulties with language or daily activities, the patients have missed their early 

diagnosis of the disease. 

Neuroimaging provides the opportunities to assist cognitive assessment and AD 

diagnosis to be more objective and less costly. Structural and functional neuroimaging 

techniques become increasingly important parts in AD research, and perhaps in the near 

future will become a tool for AD clinical diagnosis. Currently, the structural neuroimages 

like CT and MRI are useful materials for brain atrophy detection and analysis of AD-

specific structures. However, brain structure change or atrophy may only be detected 

when the cells of the structure are damaged, or the dementia symptoms are obvious. That 

means the early assessment and diagnosis of AD needs another tool which is more 

sensitive to the patients at the initial stage, i.e. before the brain structure change and 

clinical symptoms. 

Unlike structural neuroimages, the functional neuroimages like FDG-PET show the 

glucose consumption change of the brain cells of the patients at the very initial stages of 

AD. They are becoming the standard imaging technique to detect and assess AD and MCI. 

However, visual inspection of PET images is a time-consuming task, and inconsistent and 

subjective as well. Automatic processing of PET images becomes a new challenging task 

due to the lower image resolution and lower signal-noise ratio of PET images than that of 

CT or MRI. The edges of a structure are usually not clear or even not visible on FDG-

PET images. Therefore, a structural template or atlas with structural information is 

becoming a key role for the segmentation of PET images. Despite of numerous printed 

and digital brain atlases, the Talairach atlas is the gold standard in human brain mapping 

as a reference brain.  
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The cognitive severity score values such as MMSE are highly correlated with the 

changes of several structural areas and functional regions. However, quantitative 

assessment of the cognitive scores based on the changes detected from the neuroimages is 

still absent. A rapid and automatic atlas-based approach of AD assessment and diagnosis 

by processing PET neuroimages and performing statistical analysis is presented in the 

next chapter. 
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Chapter 3 

Proposed Methodology 

This chapter gives an overview of the proposed methodology in this thesis, including 

the components of the atlas-based approach for cognitive assessment and Alzheimer’s 

disease (AD) diagnosis from positron emission tomography (PET) images and their 

relationships, the definition of AD-specific structures, and the materials used in this 

research work. 

3.1 Components of Atlas-based Approach 

Atlas-assisted operations on medical images of human brain are widely applied in 

segmentation, registration, data normalization, etc. In order to assist AD assessment and 

diagnosis, the atlas must have the following features: 1) the atlas images have high 

resolutions at all three orientations; 2) the AD-specific structures are accurately 

segmented and labeled; and 3) the standard space for spatial normalization of PET images 

is defined. 
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Thus, the first step of the proposed method is to define the AD-specific structures 

based on the literature, followed by the construction of a new brain atlas with those 

structures accurately segmented and labeled. The glucose metabolism information is 

extracted from the fluoro-deoxy-glucose (FDG) PET images by two different types of 

normalization: spatial normalization and intensity normalization. The former is to 

transform the images to the common atlas space by several steps of image processing, and 

the latter is to adjust the range of intensity values by dividing the value with that of the 

less-affected area by the disease. The statistical analysis is finally performed to assess the 

cognitive scores and make a diagnosis for each of the experiment subjects. 

 

 

Figure 11. Flowchart of AD assessment from neuroimages 

Four components are highlighted: atlas construction, brain extraction, landmark detection 

and spatial normalization, and intensity normalization and statistical anslysis 
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Figure 11 shows a flowchart of the implementation and highlights the components of 

the AD assessment from neuroimages. Four components are designed and implemented: 

1) atlas construction, 2) brain extraction, 3) landmark detection and spatial normalization, 

and 4) intensity normalization and statistical analysis. All image processing algorithms 

were implemented in C++ programming language, and the statistical analysis was 

performed by Statistical Package for Social Sciences (SPSS) software. 

3.1.1 Atlas Construction 

To construct a digital structural brain atlas from a magnetic resonance imaging (MRI) 

dataset, basically there are two ways: 1) automatic generation by automated or semi-

automated computer algorithms and 2) manual generation by interactive editing tools. 

Currently, the automated methods discussed in Chapter 2, only give the results visually 

alright, but incomplete or anatomically incorrect (Chapter 4 gives the examples). In this 

research work, a post-processing platform is developed to assist the neuroanatomy expert 

in accurate brain segmentation. The platform provides a set of interactive and intelligent 

tools to allow the user to generate high quality, accurate and correct brain volumes. It 

takes a high-resolution isotropic MRI volumetric scan as its input to construct a digital 

brain atlas with brain structures segmented and labeled accurately. The platform with 

several editing tools is developed with functions for interactive segmentation, contour 

editing, 2D-3D correlation, marching sulci, and multiple dataset synchronization. It plays 

an indispensable role in accurate brain extraction from volumetric MR neuroimages due 

to the partial volume effect, artifacts, noise, and intensity inhomogeneity. It is a useful aid 

for neuroanatomy experts and clinicians. Figure 12 shows an example of an original axial 

slice and its segmented image by the presented tool. The details of atlas construction are 

given in Chapter 4. 
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(a) 

(b) 

Figure 12. An example of an axial slice and its segmented result 

(a) original axial slice; (b) segmentation results 
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3.1.2 Brain Extraction 

Brain extraction is a kind of segmentation of brain areas from the whole brain 

volumetric images. It can be done automatically, semi-automatically, or interactively. In 

this thesis, the wording “brain extraction” is referred to the automated methods 

introduced by other researchers for comparisons and interactive method on proposed 

platform in Chapter 4, and to the proposed automated methods in Chapter 5. 

An automated approach is presented to extract brain areas efficiently from volumetric 

FDG-PET scans. A threshold value is automatically calculated from the histogram graph 

of the brain images, followed by region growing and morphological operations to 

segment brain areas from these images. The approach is fully automatic (without any user 

intervention), efficient, and accurate. The details of the algorithm are discussed in 

Chapter 5. 

3.1.3 Landmark Detection and Spatial Normalization 

This component is to identify the landmarks including the midsagittal plane of brain, 

cortical bounding box, anterior and posterior commissure positions, and the most inferior 

position of cerebellum. Then, it transforms the PET images into the atlas space based on 

the detected landmarks.  

A set of the Talairach landmarks is extended to include the cerebellum into the atlas 

space by defining the landmark of cerebellum inferior. The method, which was earlier 

successfully applied to extract the midsagittal plane from MR images, is extended to 

locate the midsagittal lines (MSL) on the axial slices of FDG-PET images. Based on MSL, 

the modified Talairach landmarks and cerebellum inferior are identified. 
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Spatial normalization is actually a registration step to warp the PET images into a 

standard atlas space for further analysis. There are four steps to do this by: 1) defining the 

landmarks in the atlas space; 2) extracting the brain from PET images automatically; 3) 

identifying the landmarks in the PET images automatically; and 4) transforming the PET 

images into the atlas space. Therefore, the brain structures from different patients are 

deformed to the same space by piecewise linear transformation based on the landmarks 

defined in the atlas space and automatically identified in the PET images. The details of 

landmark definition in the atlas space and landmark detection in PET images are given in 

Chapters 6. 

3.1.4 Intensity Normalization and Statistical Analysis 

Due to the variation of image scanning with different scanners and different 

parameters, the image intensities need to be normalized before performing the statistical 

analysis. Since the cerebellum is well preserved in AD, it is selected as the reference 

region to normalize the other areas. In addition, to reduce the partial volume effect of the 

connected areas of different brain structures, the pixels with the highest intensity values 

and the lowest intensity values are excluded to calculate the average intensity. The details 

of intensity normalization and calculation of average intensities are given in Chapter 7. 

After normalizing the intensity values of AD-specific structures to the cerebellum for 

each case, this statistical analysis component consists of two parts: 1) statistical analysis 

with the models of stepwise regressions for cognitive assessment and discriminant 

classification for AD diagnosis; 2) verification of the regression equations and 

discriminant functions by calculating the diagnosis accuracy. The normalized average 

intensity values of AD-specific structures as well as the dementia severity assessment 
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scores like the mini mental state examination (MMSE) and clinical dementia rating (CDR) 

are applied to the above-mentioned statistical models to obtain the assessment scores and 

diagnosis result for each experiment subject. The details of the statistical analysis are 

given in Chapter 7. 

3.2 AD-specific Structures 

Table 4. AD-specific structures 

Types Structure Names Short Names 

hippocampus HC 

amygdala AM 

interior temporal gyrus ITG 

middle temporal gyrus MTG 

Most-affected (C1) 

superior temporal gyrus STG 

angular gyrus AG 

fusiform gyrus FG 

insular lobe IL 

putamen PU 

globus pallidus lateral GPL 

globus pallidus medial GPM 

parahippocampal gyrus PG 

supramarginal gyrus SG 

Adjacent (C2) 

thalamus TH 

Less-affected (C3) cerebellum CB 

 

Based on the state-of-the-art literature discussed in Chapter 2, fifteen anatomical 

brain regions are selected as AD-specific structures shown in Table 4. They are divided in 

three different categories: C1) the most-affected structures, C2) the adjacent structures of 

C1, and C3) the less-affected structure by AD. Patients with AD may have characteristic 
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reductions in glucose metabolic measurements in the structures of C1 and C2, while C3 

structure is the reference for intensity normalization. 

 

3.3 Materials 

The FDG-PET images used in this thesis are obtained from a website 

(www.loni.ucla.edu/ADNI) of Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database. The below language is given by ADNI, according to the Data Use Agreement 

with ADNI. 

“Data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu\ADNI). The ADNI 

was launched in 2003 by the National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 

5-year public-private partnership. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 

disease (AD). Determination of sensitive and specific markers of very early AD 

progression is intended to aid researchers and clinicians to develop new treatments and 

monitor their effectiveness, as well as lessen the time and cost of clinical trials.” 

The database collects the images from hundreds of subjects who are diagnosed as AD, 

mild cognitive impairment (MCI), and normal cognitive elders. All PET scans available 

at ADNI are acquired using one of three different protocols: 1) dynamic: a 30 minute, six 
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frame acquisition (6 five-minute frames), with scanning from 30 to 60 min post-FDG 

injection; 2) static: a single-frame 30 min acquisition with scanning 30-60 min post-

injection (for Siemens PET/CT scanners that do not have dynamic scan acquisition 

capability); and 3) quantitative: a 60 min dynamic protocol consisting of 33 frames, with 

scanning beginning at injection and continuing for 60 min that can be used to compute 

absolute glucose metabolic rate. Since the majority of the scans in the ADNI study were 

acquired with the first acquisition protocol, the experiment cases in this research were 

scanned with the dynamic protocol. They were preprocessed by registration (the 

subsequent 5 frames are co-registered to the first frame), averaging of 6 frames, and 

transformation into a grid of 160×160×96 voxels with size 1.5×1.5×1.5 mm3. The 

preprocessed images have their horizontal axis paralleled with the anterior commissure 

and posterior commissure [Langbaum et al., 2009]. 

Figure 13 shows the examples of images from a patient with MCI. Figure 13a is one 

slice of the original baseline images; Figure 13b is another original image co-registered 

with the baseline images; Figure 13c is an averaged image of 6 dynamic scans; and 

Figure 13d is a slice after reorientation. 

A total of 400 experiment subjects were downloaded from the ADNI website. They 

were clinically assessed as cognitively normal (122 subject or 30.5%) or diagnosed with 

AD (66 subjects or 16.5%) or MCI (212 subjects or 53%). In this research, they are 

randomly divided into two groups. One group data are used for statistical analysis to 

generate a classifier for AD and MCI. The cases in the second group are used to verify 

the classifier to quantify the success rates of the diagnosis. Since the diagnosis results 

(AD, MCI, or normal) are known, they are gold standard to validate the classifier. The 

details of data grouping are given in Chapter 7. 
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(a) (b) 

(c) (d) 

Figure 13. Examples of ADNI images 

(a) a slice of original baseline image; (b) a co-registered image; (c) average image of dynamic 

scans; (d) reoriented image 

 

3.4 Summary 

This chapter gives an overview of the atlas-based approach and its implementation of 

each component, after defining the AD-specific structure. A digital brain atlas is firstly 

constructed by a set of powerful interactive and intelligent tools. It has AD-specific 

structures accurately segmented and labeled. The landmarks for spatial transformation are 

defined in the atlas. Thereafter, the brain areas are extracted from the PET images 

automatically and the landmarks are identified in PET images for spatial transformation, 

followed by the intensity normalization and statistical analysis. 
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Fifteen anatomical brain regions are selected as AD-specific structures, based on the 

state-of-the-art literature, followed by the introduction of the materials used in this 

research work. 
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Chapter 4 

Brain Atlas Construction 

This chapter presents a new digital brain atlas which includes the Alzheimer’s disease 

(AD) specific structures to be constructed. As a brain atlas, it needs very high accuracy 

for each brain structure. Since the automated brain extraction methods give the results 

incomplete and anatomically incorrect, this chapter delivers an interactive post-

processing platform with several powerful and intelligent tools for atlas construction to 

extract and label brain structures from volumetric neuroimages, followed by an 

introduction of the new brain atlas. 

4.1 Brain Segmentation and Labeling 

To construct a digital structural brain atlas from a high quality magnetic resonance 

imaging (MRI) dataset, basically there are two ways: 1) automatic generation by 

automated or semi-automated computer algorithms, and 2) manual generation by 

interactive editing tools. This section gives an example of high resolution MR images to 

be segmented and labeled by evaluation of automated methods and the interactive 

platform. 
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(a) 

(b) (c) 

Figure 14. MRI images on planar views 

(a) sagittal; (b) axial; (c) coronal orientations 
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4.1.1 High Resolution MR Images 

The brain atlas is based on a 3-Tesla (3T) volumetric MRI dataset scanned by a 

SIEMENS TrioTim syngo MR B15 scanner with 32 channels. The dataset has a high 

resolution of 224×300×320 with its voxel size 0.8×0.8×0.8 mm3. Figure 14 shows an 

original sagittal slice (Figure 14a), and the reformatted slices at axial (Figure 14b) and 

coronal (Figure 14c) orientations. Both the cerebrum and cerebellum are completely 

included.  

4.1.2 Automated Segmentation Programs 

As discussed in Chapter 2, the automated or semi-automated methods highly depend 

on assumptions and parameter settings. They may give unexpected and incorrect results if 

some of the assumptions are not satisfied or some of the parameters are not set correctly. 

Figure 15 shows a slice with segmentation results from FreeSurfer [Dale et al., 1999] 

(version 4.2.0), a state-of-the-art automated brain segmentation method. In order to view 

the original image clearly, the segmented results are converted from the color-coded 

image to contours. There are several segmentation problems shown in Figure 15: under-

segmented grey matter (a and b), incompletely (too shallow) segmented sulci (c), and 

unclear cortical thickness (d). Therefore, further interactive operations are necessary to 

correct and enhance the results. In addition, automated methods usually generate results 

as bitmap images, which are very difficult to edit and need to be converted into contours 

to become editable on the original scans without blocking them. If the automated results 

are far from the expectation, the correction effort may need more manual operations and 

even longer time than the interactive drawing directly from the images by making use of 

intelligent and user friendly tools. 
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Figure 15. Problems in segmentation by using FreeSurfer 

(a) (b) under-segmented grey matter regions; (c) incompletely segmented (too shallow) sulcus; 

(d) unclear cortical thickness 

4.1.3 Intelligent and Interactive Editing Tools 

An intelligent and interactive editing tool is crucial to extract the areas of interest 

from images in applications which require images to be accurately segmented. However, 

a high resolution dataset with hundreds of slices needs hours or even days to be 

accurately segmented manually. Inconsistency may occur even for a same neuroanatomy 

expert while identifying the pixels due to partial volume effects, windowing, and different 

lighting conditions of his or her working environment. An accurate delineation of sulci 

and gyri needs thorough anatomical knowledge and three-dimension (3D) visualization to 

resolve. Therefore, time-consuming manual segmentation can be augmented and speeded 

up by applying interactive and intelligent tools. The tools are also helpful to improve the 

a

b 

c

d
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segmentation quality and reduce the manual working time, as the correction effort may 

need a lot of manual operations. 

Interactive editing tools read the inputs from the user, and may apply them to some 

simple automated methods. The methods must be fast enough because the results based 

on these inputs should be shown to the user immediately for further enhancement. The 

existing interactive segmentation and editing tools are divided into two main groups: 1) 

edge detection and drawing on two-dimension (2D) images slice by slice, and 2) object 

detection and surface modification on 3D data directly. Examples of 2D image editing 

tools are Adobe Photoshop, Microsoft Paint, Paint.NET, and TkMedit from the FreeSurfer 

package. They provide pens, brushes, or even labeling to select the pixels from the 

images. Examples of 3D image editing tools are Blender and TkSurfer from the 

FreeSurfer package. They provide spline, polygon, and surface editing to extract the 

regions of interest.  

Both groups have obvious advantages and disadvantages. The advantages of editing 

on 2D images are simple and precise because the editing is on the original data. The 

regions or even pixels are determined to be included or not by the user, slice by slice. 

However it is difficult to determine the correct anatomy. Also, the editing on 2D images 

slice by slice is very time-consuming especially for high resolution dataset with hundreds 

of slices. Visualization of segmented result on 2D images does not mean anatomical 

correctness. 3D editing is superior and efficient, though more complex than editing of 2D 

images. The editing of an object may affect its neighbors, even for those which are 

previously modified. Thus the editing task is difficult to control and unexpected results 

may be caused. Our approach combines the advantages of both. It is simple and precise 

by working on the 2D images, and makes use of the visual inspection in 3D as well. 
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4.2 Interactive Platform for Brain Extraction and 

Labeling 

 
Figure 16. Intelligent and interactive platform for brain extraction and labeling 

 

To construct a brain atlas, an interactive platform is developed to assist the 

neuroanatomy expert in accurate brain segmentation. The platform provides a set of 

interactive and intelligent tools to allow the user to generate high quality, accurate and 

correct brain volumes with labels of the anatomical structures including AD-specific 

structures. The images generated by a skull removal software (e.g. BrainSuite) are the 

initial input to the region-of-interest (ROI) based segmentation tool to identify the sulci. 

For images with segmented results or even brain structure labeling information generated 

by automated brain segmentation software (e.g. FreeSurfer), the contours are generated 

for further enhancement or fine tuning. A powerful contour editor is used instead of a 
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pixel editing tool for a more efficient manual editing. The 2D-3D correlation tool, 

marching sulci tool, and multiple dataset synchronization tools are able to assist users to 

easily and efficiently locate potential incorrect areas or landmarks to be edited. 

Figure 16 shows the architecture of the interactive platform for brain extraction and 

labeling. It consists of four modules:  

- Input/Output 

It is responsible to load or read medical images from disks and write the results back 

to the disks. It supports different modalities of medical images, e.g. MRI or computed 

tomography (CT). The results include the segmented regions, defined contours, 

edited pixels, and 3D surface rendering objects. It handles images, contours, 3D 

object files, and settings of the software. 

- Visualization 

It includes 2D display of each slice, 3D display of object surfaces, 2D-3D correlation, 

and synchronization of different input images.  

- Contour Editor 

It contains a set of functions to provide the powerful editing features for contour 

editing on 2D images. 

- Interactive Segmentation 

It comprises left and right hemisphere definition, histogram, region growing 

algorithm, 2D-3D correlation, and 3D marching sulci. 

In this section, five major tools of the modules are presented. They are 1) efficient 

ROI and histogram-based segmentation, 2) powerful contour editor, 3) 2D and 3D 

correlation, 4) marching sulci, and 5) multiple dataset synchronization. 
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4.2.1 ROI and Histogram-based Segmentation 

The ROI and histogram-based segmentation tool provides the ROI-based histogram, 

and re-classifies the voxels with the threshold value selected on the histogram graph 

(shown in Figure 17). It basically consists of two steps: 1) draw a ROI (Figure 17a), and 

then its histogram is generated and displayed (Figure 17b); 2) select and adjust the 

threshold value on the histogram graph. 

 

(a) 

(b) 

Figure 17. Region-of-interest selection and the corresponding histogram 

(a) ROI drawing and the segmented results; (b) histogram of ROI and threshold selection 

 

The segmented result is immediately displayed on the screen (Figure 17a) for the user 

to adjust the input. The user only needs to select a few ROIs to generate the segmented 

image and the tool will merge them together and generate the contours for further 
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enhancement. For the cases with serious intensity inhomogeneity within a single slice, the 

user may need to define more ROIs. 

Due to the intensity inhomogeneity between slices, local threshold values for each 

slice or even each ROI are required. Experience shows that the definition of ROIs and 

their thresholds have close values with their neighboring slices. Therefore, an efficient 

way to estimate the local ROIs and threshold values is to remember the parameters 

selected by the user, and then propagate them to the neighboring slices to reduce the user 

intervention. The estimated values are the default threshold values of a slice, and can be 

easily adjusted by the user. The new adjusted values will be learnt and applied to 

determination of threshold values for the subsequent slices. 

4.2.2 Powerful Contour Editor 

The contour editor provides an efficient and flexible way for the user to enhance the 

contours. Besides the standard operations like creation and deletion of contours, the editor 

provides several powerful features. It is able to: 

• add, modify, and remove control points on contours (to reshape or enhance the 

segmentation results); 

• view original images while contouring; 

• split a contour into two (very useful to deepen the sulci and cope with the partial 

volume effect), or join two contours into one; 

• edit contours by checking 3D display; 

• add labels for contours (to process simultaneously multiple objects); 

• separate brain into two hemispheres (useful to edit the interhemispheric fissure 

region); 
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• copy a contour on a slice and then paste it onto its neighboring slice (to speed up 

editing); 

• manipulate contours based on ROI (both within and outside the ROI); 

• display surface of the edited object (helpful to generate anatomically correct 

structures, see also below 2D-3D correlation); 

• duplicate contours to delineate multiple boundaries; 

• display and edit contours in triplanar views of the same volumetric dataset (useful 

to find out and locate inaccuracy segmentation results), shown in Figure 18; 

• label anatomic structures which are defined in Terminologia Anatomica, an 

international standard on human anatomical terminology, defined by Federative 

Committee on Anatomical Terminology (FCAT) [Terminology, 1999], shown in 

Figure 19; 

• display multiple contours with different contour types; 

• fill contours with colors to highlight the segmentation results; 

• maintain floating point representation for more accurate coordinates; 

• map contours on 3D for accuracy checking  

• modify connected contours at a same time (very useful for the segmentation of 

adjacent structures); 

• display neighboring contours. 



 65

(a) 

(b) 

(c) 

Figure 18. Contour editing on triplanar views 

(a) axial view; (b) coronal view; (c) sagittal view 
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Figure 19. Anatomical index for labeling of structures. 

 

(a) 

(b) 

Figure 20. Examples of editing tools 

(a) pixel editing; (b) contour editing 
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Comparing to pixel editing, which is easy to use and straightforward but has 

numerous limitations, the contour editor has obvious advantageous. Figure 20 gives 

examples of pixel editing and contour editing. For a pixel editing tool, the user is usually 

not able to view the original images while editing (shown in Figure 20a), and for contour 

editing, the original image is almost not covered by contours and the user still has a good 

view of the image (Figure 20b). Figure 21 gives another example. The sulcus pointed by 

the arrow (Figure 21a) is under-segmented and it can be easily corrected by adding a few 

more points (Figure 21b). 

 

(a)  

(b) 

Figure 21. An example of sulcus editing 

(a) under-segmented contour; (b) corrected contour 
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4.2.3 2D-3D Correlation 

The 2D-3D correlation greatly facilitates generation of correct anatomy. In general, 

on 2D slices it is difficult to determine the correct anatomy, mainly due to the partial 

volume effect and when the cortex is lying in the editing plane. The 3D display enables 

identification of problems, such as unrealistic shapes, too shallow sulci, bridges between 

gyri, bumps and holes on the cortical surface, and missing or incomplete sulci, among 

others. Then, the region to be corrected is identified on the cortical surface and it is 

mapped on the original 2D image for editing by the contour editor. Conversely, only 

location on a 2D slice can be mapped on the 3D surface for inspection. 

The brain surface is rendered as millions of triangles (when not decimated) lighted 

and shaded by OpenGL [Shreiner et al., 2005], which is widely used in 3D rendering 

applications. The triangles are generated by the Marching Cubes [Lorensen and Cline, 

1987] which calculates whether each isotropic voxel is inside or outside the surface. The 

coordinates of each point on a 2D image have one by one correspondence with those of 

the point in the 3D space.  

Usually the 3D surface rendering display is more obvious than 2D image display to 

show the shapes of anatomic structures, as shown in Figure 22, but the correlation from 

3D display to 2D image coordinates is more complex. While mouse is clicked on a 3D 

display, only one point with 2D coordinates (x, y) is provided (pointed by the arrow in 

Figure 22a). The correlated 2D position of the point needs a few steps to be located. 

Firstly, the triangles which are within the mouse click are identified, and the one nearest 

to the user is selected. If the selected triangle is not small enough (<0.1mm of the longest 

edge), then it will be equally divided into 3 smaller triangles and the one within the 

mouse click is selected. The selected triangle will be repeatedly divided into smaller 
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triangles until the selected triangle is small enough. The center position of final selected 

triangle is considered as the coordinates of the selected point on the 3D display as well as 

the coordinates on 2D image. The user can focus on this position to correct segmentation 

as shown in Figure 22b. 

 

(a) 

(b) 

Figure 22. Spatial correlation of 3D with 2D 

(a) mouse click on 3D display; (b) correlated 2D position 
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4.2.4 Marching Sulci 

The sulcus is one of the most difficult areas to be properly determined. The slight 

inaccuracy is often missed, or sometimes misled by pixels with similar intensities. In 

order to highlight such a kind of slight inaccuracy, an interactive component is 

implemented to calculate the curvatures for each vertex of triangles and paint the different 

colors for the vertices. The mean curvatures are calculated by making use of 

Visualization Toolkit (VTK) [Schroeder et al., 2004] library. The calculated results are 

mapped to predefined colors. Figure 23 shows examples of surface curvatures. 

The convex surfaces have higher curvature values (positive), while the concave 

surfaces have lower curvature values (negative). The flat areas have curvature values 

close to zero. A threshold value is selected by the user to determine curvature 

highlighting. Figure 23a shows an example of surface curvatures with mean curvature 

value 0.2. That means, the surfaces with curvature values of +0.2 (-0.2) or higher (lower) 

are painted with blue (red) color and the surfaces with curvature values between -0.2 and 

+0.2 are painted with grey color. Figure 23b gives an example with mean curvature value 

2 and Figure 23c shows the zoom-in image of Figure 23b. Our experience shows that the 

surface areas highlighted in such a way have likely wrong segmentation. 
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(a) 

 (b) 

(c) 

Figure 23. Examples of surface curvatures 

Mean curvature value (a) 0.2; (b) 2; (c)zoom-in of (b) 
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4.2.5 Multiple Dataset Synchronization 

Synchronization of multiple dataset display enables the user to browse through 

different images at the same time. If user has multiple scans of different study or different 

modality for a same patient, the synchronization tool allows user to display them at the 

same time. To assist the atlas construction with high accuracy, multiple scans from same 

person were acquired on 1.5T, 3T, and 7T images. Those images need to be references 

each other especially for the areas with partial volume effect. While user is moving an 

image, changing zoom, or showing different slices, another images are simultaneously 

changed. The user always has the same view of different images, no matter which image 

is being changed. Two volumetric datasets may have different volume sizes, different 

voxel sizes, and even different modalities. 

4.3 Experiment Results and Discussion 

This section gives the results of automated brain segmentation methods and 

interactive editing tools with a same high resolution MR images as input. The automated 

methods, including FMRIB Software Library (FSL), BrainSuite, Statistical Parametric 

Mapping (SPM), and FreeSurfer, were tested on a standard personal computer with 2.4 

GHz CPU running Windows XP Professional. The interactive editing tools, including 

histogram generation, thresholding, 2D-3D correlation, and multiple dataset 

synchronization, are running and testing on the same computer. After that, the 

comparisons of both results are given. 
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(a) (b) 

(c) 

(d) 

Figure 24. Segmented results of FreeSurfer 

(a) original coronal slice; (b) results for 2D slice; (3) gross view 3D surface rendering; (d) 

close view 3D surface rendering 
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4.3.1 Results of Automated Methods 

Figure 24 shows an original slice (Figure 24a) and the results for 2D slice (Figure 

24b), gross view (Figure 24c) and close view (Figure 24d) of 3D surface rendering, from 

the pial surface generated by FreeSurfer in coronal orientation. FreeSurfer transformed 

the original images into isotropic size 256×256×256. In such case, the segmented results 

have to be transformed back to the space of the original images for comparison of other 

approaches.  

Figure 25 presents the results generated by FSL (Figure 25a1-a4), BrainSuite (Figure 

25b1-4), and SPM (Figure 25c1-c4). They are the results for a superior slice (a1, b1, c1), 

the results for an inferior slice (a2, b2, c2), gross view 3D surface rendering (a3, b3, c3), 

and close view 3D surface rendering (a4, b4, c4). FSL divides the brain into grey matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF). The results shown in Figure 

25a1-a4 are the combination of GM and WM. BrainSuite generates not only the results of 

GM, WM, and CSF, but also the partial pixels of GM/WM and GM/CSF. The results 

shown in Figure 25b1-b4 include the partial pixels of GM/WM but exclude the partial 

pixels of GM/CSF. SPM gives the probabilities of GM, WM, and CSF. The results had 

90% confidence of segmented GM and WM (Figure 25c1-c4). From 2D image slices, the 

segmentation results are good and look roughly alright, at least the inaccuracies are not 

obvious, from an image processing point of view. However, 3D views show apparent 

incorrect anatomy, e.g. in the superior sagittal sinus. 
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(a1) (a2) 

(a3) (a4) 

(b1) (b2) 
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(b3) (b4) 

(c1) (c2) 

(c3) (c4) 

Figure 25. Segmented results of automated algorithms 

(a1) – (a4): results for FSL; (b1) – (b4): results for BrainSuite; (c1) – (c4): results for SPM 
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Figure 26 gives the comparison of the results from one of the automated brain 

extraction programs (Figure 26a) and the further gyri segmentation done by a neuro-

anatomy expert working on the proposed interactive platform (Figure 26b). The first three 

2D images are the superior slice, mid slice, and inferior slice. The 3D images are the 

outcome of surface rendering based on the segmented 2D images. Figure 27 gives the 

results of one hemisphere and a close view of sulci generated by the proposed interactive 

tools. 

Table 5 compares the results from the automated brain extraction programs and the 

results by applying interactive tools. Volume is the number of voxels which were 

segmented from the images. True Positive (TP) with success rate, and False Positive (FP) 

and False Negative (FN) with their error rates are calculated for each automated method. 

In average, about 4% false positive and 10% false negative were reported. 

   (a) 

   (b) 

Figure 26. Results of automated brain extraction and applying interactive tools 

(a) automated brain extraction; (b) interactive segmentation 
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(a) 

 

(b) 

Figure 27. Segmented results in 3D view by gross and close view 

(a) gross 3D view; (b) close 3D view 
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(a)  

(b)  

(c) 

Figure 28. Segmented results in 2D view 

(a) cortical GM; (b) subcortical WM; (c) amygdala and hippocampus 
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(a) 

(b) 
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(c) 

Figure 29. New brain atlas in 3D view 

(a) whole brain cortex; (b) labeled brain cortex; (c) labeled sub-cortex 

 

 

(a) (b) 
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(c) (d) 

(e) (f) 

Figure 30. Ground truth from BrainWeb and IBSR 

(left) BrainWeb; (right) IBSR; (a)(b) original 2D slices; (c)(d) 2D slices with segmentation 

ground truth; (e)(f) 3D surface display 
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Table 5. Comparison of results: automated methods and the interactive approach. 

 FSL BrainSuite SPM Interactive 

Volume 2189741 2148855 2124200 1193220 

(Overall rate) 96.09% 94.30% 93.22% - 

TP voxels 2090734 2054710 2055965 - 

(TP rate) 91.75% 90.17% 90.22% - 

FP voxels 99007 94145 68235 - 

(FP rate) 4.34% 4.13% 2.99% - 

FN voxels 187999 224023 222768 - 

(FN rate) 8.25% 9.83% 9.78% - 

 

4.3.2 New Brain Atlas 

The new brain atlas constructed by the interactive tools has labeled all AD-specific 

structures. It is a high resolution volumetric dataset of 512×512×211 pixel sizes with 

0.32×0.32×0.6 mm3 voxel sizes. Figure 28 gives the results of a slice with labels of 

cortical grey matter (Figure 28a), subcortical white matter (Figure 28b), and the structures 

amygdala and hippocampus (Figure 28c). Figure 29 shows the color-coded new brain 

atlas in 3D views of whole brain cortex (Figure 29a), labeled brain cortex (Figure 29b), 

and the labeled subcortical structures (Figure 29c), generated by the presented interactive 

tools.  

4.3.3 Discussion 

Currently the most automated methods reported their accuracy by comparison of 

segmented results with some ground truth. This is done by pixel-by-pixel comparison 

without applying any anatomical knowledge. Therefore, if the ground truth is only 

visually correct in images but not anatomically correct by knowledge, the comparison 
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may only make sense in pure image processing terms. Besides, in some software 

packages it is difficult to check the segmentation quality without mapping it to the 

original image size, e.g. in FreeSurfer. 

(a)  

(b) 
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(c) 

(d) 

Figure 31. Atlas warping on FDG-PET images 

(a)(b) atlas images warping on axial slices; (c) atlas contours warping on coronal slice; (d) 

atlas contours warping on sagittal slice 

 

Figure 30 shows examples of original 2D slice, segmented 2D slice, and 3D surface 

rendering, from a BrainWeb phantom (modality: T1, noise level: 0%, slice thickness: 

1mm, intensity non-uniformity: 0%), and IBSR (case 1_24), respectively. Each slice of 

the images shows the ground truth segmentation (Figure 30c and Figure 30d). However, it 

gives an incomplete or anatomically incorrect view by rendering the surface in 3D 

(Figure 30e and Figure 30f). 
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The sulci are usually the most difficult parts to be segmented properly by automated 

methods due to partial volume effect. For high resolution images, the results from these 

automated programs show more obvious inaccuracy, especially by a close view in 3D 

surface rendering. In addition, some unnecessary objects are segmented, such as the 

superior sagittal sinus or dura matter. Therefore, the interactive correction is absolutely 

necessary. 

Figure 31 gives an example of the atlas-based applications, which show several 

images of the atlas warping on the PET images. Figure 31a and Figure 31b show the atlas 

images on PET axial slices with label texts, Figure 31c and Figure 31d are the merges of 

atlas contours on coronal and sagittal PET images, respectively. 

Despite its advantages the presented platform has some limitations, such as the 

processing of large datasets is still time consuming, editing the surface directly on the 3D 

view is not available yet, combination of our contour editor with voxel editing would 

speed up some operations, conversion from the bitmap segmentation results into contours 

is still not perfect especially for the complicated structures like gyri and sulci. It needs 

optimization for better fitting the contours on the edges of the bitmap objects by 

balancing between the accuracy (requiring a higher number of control points) and time of 

editing (decreasing with lowering the number of control points). 

4.4 Summary 

The automated brain extraction methods give the results incomplete or anatomically 

incorrect. They need interactive correction by editing tools. The presented interactive 
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platform provides a way for accurate brain segmentation by making use of user friendly 

tools with rich features and several advantages. 

A brand new digital brain atlas is constructed by the presented interactive platform. It 

provides the features to label the AD-specific structures to assist the atlas-based image 

processing and statistical analysis on these structures. 
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Chapter 5 

Automated Brain Extraction 

In order to process mass neuroimages efficiently and objectively, fully automated 

methods are needed to segment brain regions from neuroimages. This chapter presents the 

automatic approaches to extract brain structures from computed tomography (CT) images 

which usually have less anatomical information and from positron emission tomography 

(PET) images which usually have lower resolution or contrast. It ends with a summary of 

the chapter. 

5.1 Brain Extraction from CT Images 

CT is a medical imaging technique widely used for diagnosis of human brain diseases 

and injuries like trauma, stroke, tumor and degenerative diseases. Since magnetic 

resonance imaging (MRI) was introduced in the 1980s, due to higher tissue contrast and 

better visualization of soft tissues, MRI becomes a superior tool for brain imaging as 

compared to CT. However, MRI is more expensive, less available and has its limitations 

to be used on individuals with pacemakers or other metal medical devices. CT, on the 

other hand, is widely available for examination of neurological diseases due to fast 

imaging and high resolution. 
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Brain extraction or segmentation is a crucial component in neuroimage analysis 

systems and medical imaging applications. Typically, this is the first and essential step 

before further segmentation and quantification of brain structures. This section presents a 

new approach to extract the brain automatically from volumetric CT head images. The 

approach makes use of the full range of the Hounsfield scale for thresholding and region 

growing to select regions of interest (ROIs) automatically. Thereafter, brain candidates 

are selected by applying three-dimension (3D) region growing with a variable, anatomy 

and acquisition-dependent structuring element (SE) to the group of pixels with the 

Hounsfield units (HUs) of soft tissue. Non-brain areas are removed by applying CT 

anatomy, domain knowledge and image acquisition parameters.  

5.1.1 Problems in CT Image Segmentation 

Several issues need to be considered when choosing a method for segmentation of CT 

head images. Figure 32 gives an illustration of various situations in brain extraction. The 

skull could be simply extracted by thresholding, as it is clearly visible from bone 

windowing (shown as white areas in Figure 32). However, the posterior crania are usually 

surrounded by the head support, which also has high intensities (shown as a U shape 

region in Figure 32a). In addition, metal artifacts (shown at the left ear in Figure 32b), 

beam hardening artifacts (shown near the posterior crania in Figure 32c) and hemorrhage 

with a catheter (shown in the left hemisphere in Figure 32d) may also affect thresholding 

results. Although intensity thresholding is a simple and effective method, the thresholding 

value is usually difficult to choose automatically without human intervention. 

The intracranial structures inside the skull comprise of grey matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF). For pathological cases, normal anatomy is 
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unusually distorted and additional objects may be present in the scan including lesions 

(e.g., tumors or hemorrhages) and interventional devices (e.g., a catheter). These areas 

might have close intensity values to those of the skull, GM, WM, and CSF. In such cases, 

the clustering methods face difficulty in choosing the initial parameters automatically and 

user intervention may become necessary.  

 

(a) (b) 

(c) (d) 

Figure 32. Illustration of various situations in CT brain extraction 

(a) head support area; (b)metal artifacts; (c) beam hardening artifacts; (d) hemorrhage with 

a catheter 
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(a) (b) 

(c) (d)  

(e) (f) 

Figure 33. Multiple windowing of CT images 

(a) full ranges of HUs; (b) brain window; (c) skull window; (d) soft tissue window; (e) CT 

angiography window; (f) routinue head window 
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A modern CT scanner usually acquires 12-bit 4000 or even a greater HU range, but 

the human eye cannot accurately distinguish the full range of grey levels. To let the 

physicians or radiologists to interpret the scan, a clinically useful way is the so-called 

‘windowing’, that is to limit the number of HUs to be displayed. Some existing 

segmentation approaches are mainly based on displayed image intensity. This means that 

only limited numbers of the entire Hounsfield scale are processed. Although windowing 

is a practically useful way for human to interpret the CT images, however, it may not be a 

suitable approach for computer processing because it uses the displayed image intensities 

in the window instead of the full range of HUs. Figure 33 shows an example of CT slice 

with the full range of HUs (Figure 33a) and its multiple windowing for brain (Figure 33b), 

skull (Figure 33c), soft tissue (Figure 33d), CT angiography (Figure 33e) and routine 

head (Figure 33f). It is evident that the images by applying widowing (Figure 33b to 

Figure 33f) look clearer than the full range image (Figure 33a) for the human’s eyes. 

However, for a digital computing device, the full range image has much more information 

than the windowing image. 

Due to the absence of anatomic information, it is sometimes difficult to extract 

human brain areas from CT images efficiently without any user intervention, even for 

those advanced computer image-processing technologies. The anatomy domain 

knowledge may become an important hybrid information for the better results of some 

particular computer algorithms like brain segmentation from CT scans. 

5.1.2 Materials for Experiments 

Twenty-seven CT scans from different scanners including SIEMENS Sensation 10, 

GE HiSpeed CT/i, GE LightSpeed 16 and GE Discovery HR were acquired and tested. 
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The axial slices have resolution of 512 × 512 pixels. The number of slices varies from 17 

to 96 and the slice thickness varies from 1.5 to 7.5 mm. They contain some examples of 

beam hardening artifacts, metal artifacts, partial volume artifacts, and interventional 

devices such as catheters. 

5.1.3 Methods for Experiments 

The fully automated approach to extract the intracranial tissues inside the skull makes 

effective use of adequate HU ranges for thresholding in all the steps. There is no initial 

parameter setting and no user interaction is required. The regions to be extracted include 

GM, WM, CSF and pathological areas. Segmentation methods of thresholding, region 

growing as well as domain knowledge of CT head images are applied. The approach has 

the following steps: 

• ROI selection 

The ROIs are selected by applying the thresholding and region growing 

operations on bone areas. All subsequent operations are restricted inside the 

ROIs. 

• Group selection 

The whole volume is divided into three groups: background, soft tissue and 

bone extracted by thresholding. The soft tissue group includes brain tissue 

and non-brain tissue. 

• Brain candidate selection 

A 3D region growing method with a variable and anatomy-dependent SE is 

applied to generate a 3D connected component. The regions of this 3D 

component on every 2D slices are added into a list as candidates for further 

processing.  
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• Non-brain removal 

The last step is to remove the non-brain areas from the candidate list. 

ROI Selection 

The objective of ROI selection is to make our method more efficient by restricting the 

processing areas. Every slice has its own ROI, which is determined as follows. 

• Step A. Get a 2D image of superior slice 

Use a very high threshold value (e.g., 800 HU) to generate a 2D binary image 

of a single superior slice to ensure that the selected pixels above this 

threshold are part of the skull (bone). The superior slice is positioned at the 

two-third of the numbers of slices. For example, if the CT scan has 24 slices, 

the 16th slice from the inferior is selected. 

• Step B. Select a seed point for region growing 

Select the first point on the vertical centerline of the image from the anterior 

direction as the seed point for region growing. This can avoid a potential 

influence of the head support having a high intensity too. 

• Step C. Thresholding 

Use a threshold value (e.g., 110 HU) to apply to the whole scan to generate a 

volume with pixels above this threshold. This volume contains all bone pixels 

as well as metal artifacts and interventional devices such as catheter. 

• Step D. Generate the largest connected component 

Apply 3D region growing constrained the volume calculated in Step C 

starting from the seed point selected in Step B to generate the largest 

connected component. This component is considered to be the crania, 

connected with other bone areas and/or devices. 
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• Step E. Determine ROI on each slice 

Automatically set the rectangle border of the largest connected component on 

each slice as ROI. The subsequent steps ignore all the areas outside these 

ROIs. Figure 34b shows an example of ROI. 

 

(a) (b) 

(c) (d) 

Figure 34. Brain segmentation from CT images 

(a) original image with windowing display; (b) ROI selected and image divided into three 

regions; (c) brain candidates selected; (d) non-brain areas removed 
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Group Selection 

The head consists of bone, soft tissue, CSF, fat and air arranged from high to low CT 

numbers, i.e. HU. The space inside the skull is the region to be extracted. It is 

straightforward to divide the whole scan into three groups (background, soft tissue and 

bone) by selecting two threshold values (e.g., –50 HU and 110 HU). The range between 

the threshold values is wide enough to contain all brain tissues like GM, WM, and CSF. 

However, some of non-brain tissues (e.g., fat) are also included. Brain tissues and non-

brain tissues are in a same group and the non-brain areas will be removed from it in the 

subsequent steps. Figure 34b shows a slice after grouping (the background is shown as 

black, soft tissues are grey and bone is white). 

Brain Candidate Selection 

The intracranial tissues are anatomically connected in 3D. A 3D region growing 

method is applied to extract these tissues. Then, the non-brain soft tissues and fat could be 

possibly included, especially in the areas nearby the eyes. The SE for region growing is 

supposed to be large enough to let the growing stay inside the crania. We propose a 

variable SE based on anatomy and voxel size of the CT scan. The size of SE is sensitive 

especially to the slice thickness and the gap between slices. For the cases with thicker 

slices, the SE size is smaller. Usually, the region can easily grow outside the crania from 

the superior orbital fissure (SOF). The SOF is also known as sphenoidal fissure, which is 

a gap between the roof and lateral wall of the orbit and is bounded by the lesser and 

greater wings of sphenoid. The size of SOF is about 3 × 22mm [Morard et al., 1994]. For 

any point p(xp, yp, zp), its operational SE is defined as S(p). 
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where Cx, Cy and Cz are the constants to define the size of SE. As the SOF width is about 

3 mm, these constants should be greater than or equal to 3, say Cx = Cy = 5 and Cz = 3. 

Vx, Vy and Vz are the voxel sizes (millimeter per pixel). Nx, Ny and Nz are the numbers of 

pixels in length of SE of X, Y and Z direction. The coordinate system (x, y, z) of a 

volumetric data is: X runs from right to left of subject, Y runs from anterior to posterior 

and Z runs from inferior to superior. The size of SE is computed as (2Nx + 1) × (2Ny + 1) 

× (2Nz + 1). Figure 35 shows an example of SE with the size of 7 × 5 × 3 (Nx = 3, Ny = 2 

and Nz = 1). Figure 35a is the XY orientation of SE, Figure 35b and 35c are the XZ and YZ 

orientations. For the centre point marked with × in Figure 35, according to the above 

definition, its SE consists of all shaded pixels. 

(a) (b) (c) 

Figure 35. An example of structuring element with the size of 7×5×3 

(a) XY orientation; (b) XZ orientation; (c) YZ orientation 

The seed point is set on the superior slice, the same selected in the step of ‘ROI 

selection’. The centre point of the ROI is an ideal seed point to start the region growing. 

The set B, which consists of the candidate regions, is growing every step as follows: 
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The growing operation is stopped when Bk+1 = Bk. After the region growing is 

stopped, the set B should be expanded by SE to amend the edge. 

 ( ){ }         BppSBB ∈= ∪  (5.3) 

Figure 34c shows the result of brain candidates, which are calculated as follows: 

1. Create a first-in-first-out list L and add seed point P0 into it. 

2. While L is not empty, do the following 

• Retrieve a point Ph from the head of L. 

• Add the point Ph to the set B. 

• Check all Ph’s neighbors (Pn) within the set S(Ph) (but not belonging to set B yet). 

If all points of S(Pn) are in the BS group, Pn is added to L. 

• Remove Ph from L. 

3. For every point p in the set B, their SE neighbors S(p) within the group BS are 

added into set B. 

4. The areas in the set B are the candidate regions of the brain. 

Non-brain Removal 

In order to remove the non-brain tissue from the selected brain candidates, on each 

2D slice every connected component from the brain candidate list is determined whether 

it is the brain or not based on its size. If the connected component is very small, i.e., the 

number of pixels is less than a predefined value (e.g., 10), it will be removed from the 

candidate list. 

The morphological operation opening is applied to remove the burrs, which are 

usually occurred nearby the eyes and dilation operation with the SE of 5 × 5 is applied to 
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amend the corners, which were missed by a large SE in the step ‘brain candidate 

selection’. Figure 34d shows the final result after removing non-brain areas. 

5.1.4 Results and Discussion 

The algorithmic results are analyzed by comparing to ground truth (GT) and 

calculating the values of sensitivity, specificity and Dice’s index (DI). Sensitivity is the 

ratio of the total number of true positive (TP) to the total number of TP and false negative 

(FN). Specificity is the ratio of the total number of true negative (TN) to the total number 

of TN and false positive (FP). DI is the overlap between the extracted regions and ground 

truth 

 ( )
GS
GSDI

+
=

∩2    (5.4) 

where S and G are the sets of segmented result and ground truth. TP is the number of 

voxels present in both segmented brain and GT; TN is the number of voxels present in 

neither in the segmented brain nor GT; FP is the number of voxels present in the 

segmented brain but not in GT; and FN is the number of voxels present in GT but not in 

the segmented brain. 

The approach was implemented in C++ and validated by 27 CT scans. The 

processing time of extracting the brain for a CT scan with a resolution of 512 × 512 pixels 

varies from three to 17 seconds depending on the numbers of slices (e.g., 3–5 seconds for 

17–47 slices and 16–17 seconds for 96 slices). For 5 of 27 cases, the GT has been 

generated by a neuroanatomy expert. The other cases were visually checked with 

satisfactory results. Figure 36 shows four slices (Figure 36 left) of a scan from inferior 

(Figure 36a) to superior (Figure 36d) and the corresponding extracted images (Figure 36 

right). Figure 37 displays the 3D surfaces of the extracted brain (Figure 37a) and its GT 
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(Figure 37b), generated by the Marching Cubes algorithm [Lorensen and Cline, 1987]. It 

shows an excellent match between the extracted and ground truth surfaces (some very 

tiny differences are on the basal surface only). Table 6 provides sensitivity, specificity 

and DI of five cases. 

 

Table 6. Test results of brain extraction from CT Images 

Case GT Volume 
(cm3) 

Segment 
Volume (cm3) Sensitivity Specificity Dice’s 

Index 
1 1103 1143 99.9% 98.7% 98.1% 

2 1399 1420 99.9% 99.6% 99.1% 

3 1360 1393 99.8% 99.3% 98.6% 

4 1772 1758 98.7% 99.9% 99.1% 

5 1345 1371 99.9% 99.5% 98.9% 

Average - - 99.6% 99.4% 98.7% 

 

 

 (a) 
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 (b) 

 (c) 

 (d) 
Figure 36. Examples of original slices and the corresponding extracted images 

(a) – (d): slices from inferior to superior 
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(a)  

(b) 

Figure 37. Three-dimension brain surfaces 

(a) extracted brain; (b) ground truth (for case 4 inTable 6) 
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(a)  

(b) 

(c) 

(d) 

Figure 38. Cases of under-segmented and over-segmented brain areas 

(a and c) original CT images; (b) slight under-segmented cerebellum (pointed to by the 

arrow) due to a large SE; (d) over-segmented brain areas (indicated by the arrows) 
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For the region growing approach, the skull openings may cause growing to ‘leak’ 

outside the crania. Besides SOF, these openings include foramen magnum, foramen ovale, 

foramen spinosum, foramen lacerum and jugular foramen. A large SE can avoid it to 

happen because it can ensure the region growing to remain inside the crania. However, if 

the SE size is too large to reach the sharp corners of brain images, the corner areas may 

be under-segmented (Figure 38a and b). The morphological dilation operation could 

amend some of them, but the side effect is that some non-brain areas could be enclosed 

(Figure 38c and d). In this case, some additional rules may be applied to resolve it. 

Practically, there is no leakage observed and no serious under-segmented situation 

happened for all 27 cases tested. The SE size is well balanced based on the anatomy 

information such as the slice thickness and the size of SOF. 

 

5.2 Brain Extraction from PET Images 

Segmentation of the brain areas from PET images is a basis for many applications, 

e.g. registration with the images of other modality like MRI or CT, quantitative analysis 

of brain cortex and brain anatomical structures, volumetric symmetry analysis, and 

pathology detection, etc. Due to a limited spatial resolution and a low signal-noise ratio of 

FDG-PET images, automated brain extraction from those images is still a challenging 

task. This section presents a new approach to segment the brain regions from FDG-PET 

images automatically. 
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5.2.1 Methods for Experiments 

The approach for brain extraction includes four steps. They are 1) histogram graph 

generation; 2) peak value selection; 3) threshold value determination; and 4) region 

growing. 

Histogram graph generation 

In FDG-PET images, the regions of the cerebrum and cerebellum have brighter 

intensities than the areas around or outside the crania (Figure 39a-b). The histogram 

graph is created by counting the number of voxels with the same intensity values in the 

whole volumetric images. It is a frequency distribution in which the widths are 

proportional to the intensities, and the heights are proportional to the frequencies of the 

intensity values. It is often used for density estimation. Figure 39c-d show the graphs with 

a smoothed histogram of the images of Figure 39a-b, by cutting off the highest peak of 

background for illustration purpose. 

Peak values selection 

There are two situations about the histogram graph by observing all the cases to be 

processed. The first situation is that the histogram graph has two peaks (Figure 39c), 

besides a highest peak of the image background. It occurs about 97% of all cases (219 of 

226). The other 3% (7 of 266) has only one peak (Figure 39d).  

• Two peaks on the histogram graph indicate the areas inside the crania and the 

areas around the crania (Figure 39e), and  

• One peak to indicate the areas inside the crania (Figure 39f).  
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 39. Histogram graphs with two peaks and one peak 

(a)(b) original images; (c)(d) histogram graph; (e)(f) segmented results based on the 

threshold values selected on histogram graph 

In either situation, the peak points are selected by calculating the intensities gap Gp 

between current point p and nearest point p1 which has same number of voxels. There 

may be many points with same number of voxels (in Figure 39c, all the points on the line 
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from p1 to p2). In such case, the nearest point p1 from point p is selected, and the intensity 

gap Gp is the difference of intensity values of p and p1. For example at the histogram 

graph of Figure 39c, let us consider X as the horizontal axis of intensities and Y as the 

vertical axis of the number of voxels which have same intensity values. The intensity gap 

value Gp at position p is defined as 

 ( ) yy PPandxiPPG iixxp =<−= ))( (    where,max  (5.5) 

where i is the position on X axis, Px(i) is the intensity value of i, Py(i) is the vertical 

height of i on the histogram graph, max is to calculate the maximum value of all i values 

which meet the defined conditions. 

After calculating the G values for all intensities, the point with the largest G values is 

selected as the peak point for the situation which has only one peak. For the situation 

which has two peaks, the point with the largest G value and the point with the second 

largest G value are selected as peak points. The threshold values will be determined based 

on these selected peak points in the subsequence step. 

Threshold value determination 

The peak point at the rightmost hand of the histogram graph (point p1 in Figure 40a) 

indicates a class of pixels with higher intensity values, i.e. the pixels of the brain cells. 

Another peak point p2 indicates the non-brain or background pixels. In order to largely 

segment two classes of brain and non-brain pixels, the deepest point in the valley (point p 

in Figure 40a) is selected as the threshold value. The point p is also the highest point of 

the convex (Figure 40b), as well as the longest distance towards two peak points (p1 and 

p2). To locate the highest point of convex, the orthogonal lines of the peak line (L p1 p2) 

are drawn to have two intersection points, p and p΄. The point p is the intersection with 
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the histogram graph, and the point p΄ is the intersection with L p1 p2. The set of all the 

distances between p and p΄, for all the points on the line L p1 p2, is defined as 

 ( ){ }21'2121  and ,'  ,   ,' ppppppi LLLpxixppdD ⊥∈<<=  (5.6) 

where di(pp΄) is the distance between the points p and p΄, x1 and x2 are the x-axis 

positions of point p1 and p2, L p1 p2 and Lpp΄ are the lines of points p1 and p2, and points 

p and p΄. 

 

(a) 

(b) 

Figure 40. Selection of threshold value 

(a) smoothed histogram graph; (b) highest point on the convex border 
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 (a) 

 (b) 

 (c) 

Figure 41. Examples of brain extraction from PET images 

original brain images (left) and their extracted areas (right). (a) an inferior slice; (b) a 

middle slice; (c) a superior slice 
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The corresponding x value of the point, whose di(pp’) value is maximum in the set D 

from equation (5.6) is the threshold value to segment the FDG-PET image into two parts: 

brain area and non-brain area. Based on the selected threshold value, the binary mask 

images are generated. 

Region growing 

Thresholding segmentation may leave some isolated points or small areas and may 

have holes inside the brain area. It is necessary to remove those isolated areas and fill 

those holes to complete the areas or volume inside crania. A 3D region growing algorithm 

is applied to do so as the brain area is considered as a largest connected component. The 

seed point for region growing is the center of the volume. If it happens to be the non-

brain voxel, one of its brain voxel neighbors is automatically selected. The growing goes 

in three directions at the same time and complete until no more brain voxel added. 

Several large holes (non-brain areas) inside the crania like ventricles need to be also filled. 

Instead of locating these areas one by one, an efficient way is to apply the region growing 

algorithm to the non-brain area outside the crania. The seed point can be any one on 

background area, e.g. (0, 0, 0). Figure 41 shows the examples of three slices (left) and 

their extracted areas (right) from inferior slice (Figure 41a) to superior slice (Figure 41c). 

5.2.2 Results and Discussion 

A total of 226 cases with a resolution of 160×160×96 voxels of size 1.5 mm3 were 

tested. The average processing time was 3.03 seconds per case. The approach has been 

validated on all the cases qualitatively and 10 cases quantitatively. The quantitative 
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validation cases had the brain areas manually segmented from the original FDG-PET 

images and had the midsagittal lines manually drawn on the images for comparison with 

the results of the automatic method. Table 7 provides the segmented results with 

sensitivity, specificity and Dice’s index (DI). Due to a high cost of quantitative validation, 

the result section only lists 10 cases of the comparison results with the automated 

processing. For these 10 cases, a total of 960 images were manually drawn one by one 

with contours for brain area extraction.  

Table 7. Test results of brain extraction from PET images 

Case Manual 

(cm3) 

Auto 

(cm3) 

Sensitivity 

(%) 

Specificity 

(%) 

DI 

(%) 

1 1143.86 1316.99 99.53 98.87 96.66 

2 1234.17 1393.21 99.91 97.73 93.86 

3 1305.84 1488.07 99.26 97.25 92.78 

4 1426.10 1709.43 99.96 95.87 90.93 

5 1443.07 1503.79 94.76 98.01 92.81 

6 1273.56 1402.64 99.70 98.09 94.85 

7 1312.25 1446.03 99.78 98.04 94.94 

8 1105.62 1151.40 98.40 99.12 96.41 

9 1622.35 1374.41 82.47 99.45 89.30 

10 1570.25 1635.64 98.54 98.69 96.53 

Average 1343.71 1442.16 97.23 98.11 93.91 

 

Thresholding is probably the most popular method for image segmentation. However, 

thresholding method usually needs a user to input some initial parameters to select the 

threshold values based on the histogram or clustering. For neuroimages like MRI, CT, or 

PET, it is still a challenging task to determine the threshold value automatically due to 

artifacts, partial volume effects, and inhomogeneity of the volumetric scans. Advanced or 

complicated segmentation methods like level set, watershed, or model-based methods 

usually mean a higher cost of calculation, but does not mean the higher accuracy 
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especially for the images with lower contrast like FDG-PET. For example, the software 

SPM requires several minutes to process a single PET scan. Since the results are warped 

into a template space, it is difficult to get the correlated information back on the original 

images. 

 

(a) 

(b) 

Figure 42. Examples of difficult cases for brain extraction from PET images 

(a) more intensive noise near the temporal lobe; (b) brainstem connected with cerebellum 
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Because of the properties of FDG-PET, computer programs face difficulties to 

distinguish several non-brain areas from the cerebrum or cerebellum. For examples, the 

inferior part of the brain usually has more noise near the regions of temporal lobes 

(Figure 42a); there is no significant difference of intensities between the brainstem and 

other parts of brain, and the brainstem on images is often connected with the cerebellum 

(Figure 42b). It is difficult not only for a computer program but also for a human without 

anatomical knowledge to segment them. The predefined or known anatomical 

information, e.g. the normal brain size, related positions of structures, etc. may play an 

important role for neuroimage processing. 

The presented approach has several limitations. First, if the images have serious 

partial volume effect, those affected voxels are difficult to be classified into brain or non-

brain areas. It may also face problems even for an experienced expert to manually 

segment the low resolution images like FDG-PET. Second, to speed up the processing 

time, the approach makes use of the histogram of the whole volume. However, for the 

cases with serious inhomogeneity between the slices, this method may cause false 

segmentation results. In such cases, the histogram of each slice may be helpful. 

5.3 Summary 

Two automated brain extraction algorithms are presented in this chapter for structural 

CT images and functional PET images, respectively. They are usually the initial step of 

image processing for subsequent components about further analysis and data 

interpretation. For CT head images, thresholding and region growing are applied to select 

seed point and generate binary images. A 3D region growing with a variable, anatomy 
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and acquisition-dependent structuring element size is used to generate brain candidates. 

Prior domain knowledge such as Hounsfield unit ranges, image position (superior slice or 

inferior slice), size of orbital/nerves canals, slice thickness information, and 

morphological operations are applied. For PET head images, histogram graph, 

thresholding, region growing, and morphological operations are applied to extract the 

brain from a volumetric FDG-PET dataset. 
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Chapter 6 

Landmark Extension and Detection 

The accuracy of scan-to-atlas registration highly depends on the number of landmarks 

and the precision of landmark identification. This chapter presents an extension to the 

modified Talairach landmarks. It starts with the definition of the extended landmark, 

followed by the methods to detect the landmarks on positron emission tomography (PET) 

images. It ends with a summary of the chapter. 

6.1 Landmark Extension 

This section gives the objective of the landmark extension and the definition of new 

landmark, the cerebellum inferior. 

6.1.1 Objective of Landmark Extension 

The Talairach transformation is one of the most commonly used methods to 

normalize human brains based on the Talairach landmarks. As fluoro-deoxy-glucose 

(FDG) PET images are difficult to detect the brain structures automatically or even 

manually, landmarks on the images play an important role for the accuracy of data 
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normalization and localization analysis. Since the cerebellum is the structure less affected 

by Alzheimer’s disease (AD), it is an ideal reference region to normalize the other 

structures, e.g. the hippocampus and amygdala, which may be seriously affected by the 

disease. However, a problem with the Talairach approach is that the second largest 

structure of the brain, the cerebellum which is located at the metencephalon within the 

cranial cavity, is not well-defined in the Talairach space. Part of the cerebellum is inside 

the 3D proportional grid system, but the inferior of the cerebellum is outside and no 

landmark is defined for cerebellar in the Talairach space. Therefore, applications which 

need to operate on cerebellar images or transform scan images into an atlas space may 

need a new landmark of cerebellum for the higher accuracy. The additional landmark can 

increase the degree of freedom for the Talairach transformation, and brain warping 

techniques with high degrees of freedom may naturally provide much better results.  

6.1.2 Cerebellum Inferior 

The most inferior point of the cerebellum, as shown in Figure 43, is defined as a new 

landmark: Cerebellum Inferior (CBI). It is the point of intersection of three planes: 1) the 

midsagittal plane, 2) the coronal plane passing through the most superior (most dorsal) 

point of the cerebellum, and 3) the axial plane passing through the most inferior (most 

ventral) point of the cerebellar cortex. By adding the CBI landmark, both the cerebrum 

and cerebellum are included into the Talairach space as shown in Figure 44. The 

Talairach grid system is increased to 18 cuboids by 9 landmarks (as opposed to the 

original 12 cuboids by 8 landmarks). 
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Figure 43. Cerebellum inferior on a coronal slice 

 
Figure 44. New grid system with landmarks 

 

6.2 Midsagittal Lines Identification 

The midsagittal line (MSL) on an axial slice is the separating line of left and right 

brain hemispheres. A symmetry index [Hu and Nowinski, 2003], which was successfully 

applied to magnetic resonance imaging (MRI) for midsagittal plane (MSP) detection, 

needs to be modified and extended to calculate the symmetry of brain cortex of FDG-PET 

images rather than the areas near the interhemispheric fissure, in order to avoid the areas 
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which have less glucose uptake than brain cells (e.g. ventricles). There are three steps to 

detect the MSL on an axial slice: 

• MSL candidate selection 

• Symmetry Index calculation 

• MSL determination. 

6.2.1 MSL Candidate Selection 

MSL is supposed to be an almost vertical line, with some rotations if the images are 

rotated while scanning, or some shifted from the center if the images are shifted during 

scanning. The range of rotations or shifts has their limits, e.g. the rotation not more than 

40º. The candidates are chosen and the number of MSL candidates (Nc) is calculated by 

the following steps (Figure 45a): 

• The middle vertical line is the first candidate (Nc=1); 

• The middle line is shifted to the left by λ pixels, e.g. λ = 1, for Ns times, e.g. Ns = 

10; 

• The middle line is shifted to the right by λ pixels for Ns times (Nc=1+Ns×2); 

• Every vertical line is rotated to the left by θ degrees, e.g. θ = 2, for Nr times, e.g. 

Nr = 10; 

• Every vertical line is rotated to the right by θ degrees for Nr times (Nc=(1+Ns×2) 

×(1+Nr×2)). 
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(a) 

(b) 

Figure 45. Midsagittal line detection 

the candidate lines; (b) calculation of symmetry index 
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6.2.2 Symmetry Index Calculation 

A total number of Nc candidates are chosen to calculate their symmetry index (SI) 

values. For each candidate line (CL), SI is defined as an average of the sum of the 

difference between the left and the right of the CL. The calculation of SI is defined as, 

 ( )
( ) ( )
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,SI

H Np
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×

−
=
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1 1γθ  (6.1) 

where H is the height of the image, Np (e.g. Np = 4) is the number of pairs of the parallel 

lines which have same distance (γ) to the CL. V(PL) and V(PR) are the intensity values of 

the mirrored points PL and PR on the parallel lines (Figure 45b). Their coordinates are 

defined as  

 ( ) ( )θγθγ sin,cos,, ∓∓ PyPxyxP RL =  (6.2) 

6.2.3 MSL Determination 

The line with minimum SI from a group of candidates is selected as the MSL. The 

results of brain extraction and MSLs are shown on an inferior slice (Figure 46a), a middle 

slice (Figure 46b), and a superior slice (Figure 46c). 
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(a) 

(b) 

(c) 

Figure 46. Midsagittal lines on the selected axial slices 

(a) inferior slice; (b) middle slice; (c) superior slice 
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6.3 Landmark Detection 

This section comprises two parts of the landmark detection, including 1) the modified 

Talairach landmarks identification and 2) the CBI placement, on FDG-PET images. 

6.3.1 Modified Talairach Landmark Detection 

The modified Talairach landmarks are detected by four steps. They are: 1) detection 

of the AC-PC line (APL) on MSP; b) determination of L, R, A, P landmarks on the AC-

PC plane; c) determination of the AC position and the I landmark on the coronal plane 

passing through AC; and d) determination of PC position and the S landmark on the 

coronal plane passing through PC. 

Detect AC-PC line on MSP 

The APL is an intersection line of MSP and AC-PC plane, which is a perpendicular 

plane to MSP and passes through both the AC and PC. The detection of the APL is the 

first and important step to extract the AC-PC plane and affect the results of the 

subsequent steps to detect all the landmarks. Since FDG-PET images lack structural 

information, it is difficult to detect the anterior commissure and posterior commissure 

structure on the images directly, as well as the AC and PC landmarks. An alternative way 

to estimate the APL from MSP is to detect the longest line from anterior to posterior 

(Figure 47) on the MSP image with the skull removed. Even though the exact positions of 

the AC and PC are still uncertain, they are determined later by the inferior and superior 

landmarks according to the modified Talairach space. 
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(a) 

(b) 

(c) 

Figure 47. AC-PC line on MSP and rotated MSP images 

(a) MSP; (b) MSP with 10º counterclockwise rotation; (c) MSP with 10º clockwise rotation 

 

The algorithm of detecting the longest line from MSP is to search the projections 

from both anterior and posterior directions. On a 2D image of the MSP (Figure 47), the 

searching is from both the left and the right of the image. Since the APL has its 

anatomical position within human brain, the proportional scaling in the Talairach space 

(e.g. the distance between A and P is 174mm, the distance between S and the APL is 

74mm, and the distance between I and the APL is 43mm) is applied to the search 
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algorithm. After the detection of the longest horizontal line, the MSP image needs to be 

rotated through a degree of λ (e.g. 10º) to find out the longest line from non-horizontal 

direction. It can be done by a loop of rotating the image from – λ to + λ. Figure 47b is the 

rotated image of Figure 47a with 10º counterclockwise, and Figure 47c is the image of 

10º clockwise rotation. 

Determine L, R, A, P on AC-PC plane 

The AC-PC plane (Figure 48) is extracted from volumetric data based on APL and 

the skull-removed brain of previous work (refer to Chapter 5 for the details). The 

algorithm to determine the L and R landmarks is to select the extreme left point and 

extreme right point as L and R landmarks by searching the lines parallel to the MSP. 

Similarly, to determine the A and P landmarks, the extreme anterior point and extreme 

posterior point are selected by searching the lines perpendicular to the MSP. Figure 48 

shows an AC-PC plane with L, R, A, P landmarks identified. 

 

 
Figure 48. AC-PC plane with L, R, A, P landmarks 
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(a) 

(b) 

(c) 

Figure 49. I, S, AC and PC landmarks on PET images 

(a) I landmark on VAC; (b) S landmark on VPC; (c) AC and PC on MSP 

Determine I and AC 

In the Talairach space, the length from anterior to posterior is 174mm. The distances 

from anterior to AC and PC are 70mm and 94mm, respectively. According to the 

definition of the Talairach space and the positions of A and P, the AC and PC positions 

are estimated by proportional scaling. They are marked as eAC and ePC. The coronal 

slices near eAC (e.g. ± 5mm) are selected as the candidates of VAC. By calculating the 

most inferior point on all VAC candidates, the VAC is identified and the AC is also 

determined at the same time. Figure 49a shows an example of I on VAC. 
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Determine S and PC 

Similarly, the coronal slices near ePC (e.g. ± 5mm) are selected as the candidates of 

VPC. By calculating the most superior point on all VPC candidates, the VPC is identified 

and the PC is also determined at the same time. Figure 49b shows an example of S on 

VPC, and Figure 49c shows the AC and PC on the MSP. 

6.3.2 Extended Landmark Detection 

A coronal slice passing through the most superior point of the cerebellum is called 

VCB. The extended landmark CBI will be located by the following steps: a) estimate the 

position of VCB (eVCB) and select the candidates of VCB; and b) Locate CBI from the 

candidates of VCB. 

(a) 

(b) 

Figure 50. Estimated VCB plane 

(a) definition of ROI; (b) calculation of GCL 
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Estimate the eVCB and select the candidates of VCB 

In order to estimate the position of VCB, a transverse fissure cerebellar tentorium, is 

detected first. It is located between cerebrum and cerebellum [Van De Graaff, 2001]. 

According to the FDG-PET image property of that the cerebrum and cerebellum have a 

much greater glucose uptake values than the other fissures [Wang et al., 2007; Zincirkeser 

et al., 2007], the fissure between the cerebrum and cerebellum is detected by the 

following steps: 

1) Define a region-of-interest (ROI) for faster detection of cerebellar tentorium. The 

ROI of X-axis starts from PC and ends at P. The ROI of Y-axis starts from the APL and 

ends at the bottom of MSP image. All the processing and calculation below are restricted 

within this ROI (Figure 50a). 

2) Define a glucose consumption line (GCL), starting from the top edge of ROI, 

ending at the cortical surface of brain. 

 )( 0xxtgy −×= θ  (6.3) 

where θ is the angle between GCL and X-axis, and x0 is the position on AC-PC line. 

3) Calculate the sum of glucose consumption on GCL. 

  ∑= ),,,(),( 00 θθ xyxGCLxS  (6.4) 

where x and y are the coordinates of GCL on the MSP image. 

4) Locate a GCL with the minimum sum of glucose consumption GCLmin. 

The estimated point for VCB (eVCB) is identified as the cross point of GCLmin and 

APL (Figure 50b). The coronal slices passing through and nearby eVCB (e.g. 3mm) are 

selected as the candidates of VCB. 
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Locate CBI from the candidates of VCB 

(a) (b) 

Figure 51. Areas of brainstem and vermis 

(a) brainstem area excluded; (b) vermis area excluded 

The cerebellum has two hemispheres connected by the vermis. There are two 

conditions need to be considered while calculating the lowest part on coronal images, as 

shown in Figure 51. The most inferior bottom points of cerebellum are lower than the 

vermis and higher than the brainstem. As the size of brainstem is wider than that of 

vermis, the width about 7mm is excluded from both hemisphere sides for calculation of 

the cerebellum bottom. Figure 51a shows an example of coronal slice with brainstem 

which is lower than the cerebella bottom, and Figure 51b shows the example of coronal 

slice with vermis which is higher than the cerebellum bottom. The CBI is located by 

performing the following steps: 

• Exclude the areas which may contain the brainstem and vermis from the coronal 

images. 

• Detect the lowest part on both hemispheres and calculate the average. 

• Find out a slice with lowest average value of the cerebellar hemispheres. The 

slice is VCB, and the most inferior point on VCB is the landmark CBI. 
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6.4 Experiment Results and Discussion 

For MSL detection, a total of 226 cases with a resolution of 160×160×96 voxels of 

size 1.5 mm3 were applied to validate the algorithm qualitatively, and 10 of them were 

validated quantitatively. The quantitative validation cases had the MSLs manually drawn 

on the images for comparison with the results of the automatic method. 

Table 8. Test results of MSL detection 

Case Angular difference (º) Center displacement (mm) 

1 1.09 ± 0.87 0.43 ± 0.01 

2 1.25 ± 0.89 0.41 ± 0.01 

3 0.87 ± 0.48 0.23 ± 0.01 

4 0.95 ± 0.93 0.58 ± 0.15 

5 1.47 ± 1.12 0.05 ± 0.03 

6 1.12 ± 0.95 0.70 ± 0.26 

7 0.39 ± 0.74 0.10 ± 0.04 

8 0.71 ± 0.89 0.20 ± 0.07 

9 1.17 ± 1.74 0.29 ± 0.11 

10 0.29 ± 1.02 0.00 ± 0.00 

Table 8 provides the mean values and the standard deviations of the angular 

difference (Da) and the center displacements (Dc) of comparing the automated MSL 

detection and the manual method. No significant statistical difference was observed. The 

Da is defined as the angle between two lines L and L΄ (Equation 6.5). L (ax+by+c=0) is 

the MSL line detected automatically, and L΄ (a’x+b’y+c’=0) the line manually drawn. 

The Dc is defined as the distance of the center points of lines L and L΄ (Equation 6.5). 
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where a ≠ 0, a’≠ 0, and H is the height of the image. 
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(a) 

(b) 

(c) 

Figure 52. An example of FDG-PET images with landmark grid 

(a) grid on axial slice; (b) grid on coronal slice; (c) grid on sagittal slice 

For landmark detection, a total of 49 cases were applied to validate the algorithm.  

The average processing time of landmark detection was 2.78 seconds per case running on 

a standard personal computer with 2.4 GHz CPU. Fifteen of those cases have the 

landmarks manually placed by a neuroanatomy expert for comparison with the results of 

the automatic method. Figure 52 gives an example of grid by detected landmarks on three 
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orientations of FDG-PET images. The other cases were visually checked with satisfactory 

results. 

Table 9. Test results of landmark misplacement (mm) 

Case AC PC L R A P S I CBI 
1 1.15 2.53 1.25 0.43 0.75 1.14 0.82 1.14 3.36 

2 2.09 2.45 0.98 0.89 0.67 0.17 0 1.12 0.09 

3 0.8 0.8 0.58 0.24 0.39 0.22 0 2.66 0.71 

4 0.32 2.01 0 0 1.73 0.94 1.5 1.53 0.23 

5 0.8 0.8 1.92 0.25 1.65 0.47 1.13 0.38 1.69 

6 2.56 3.31 0.7 0.04 0.66 0 0.5 1.49 2.23 

7 1.73 2.48 2.27 2.07 0.11 0.3 0 0.75 0.62 

8 1.15 1.55 0 0 0 0 0.5 1.49 1.73 

9 1.45 1.44 0 0.96 0 0 2.09 1.82 0.99 

10 1.36 0.55 0.26 1.15 0.57 0.54 0.13 1.11 0.73 

11 1.17 1.17 0.99 0 1.25 1.38 1.13 2.89 0 

12 1.45 2.37 0.51 0 0.53 0 1.33 1.08 1.12 

13 1.66 1.45 0 0 0 0 0.09 2.55 0.49 

14 0.74 0.47 0.74 0.59 0.36 0.03 0 5.72 2.38 

15 0.94 1.31 0.57 0 0 0.44 0.46 1.49 1.12 

min 0.32 0.47 0 0 0 0 0 0.38 0 

max 2.56 3.31 2.27 2.07 1.73 1.38 2.09 5.72 3.36 

μ 1.29 1.65 0.72 0.44 0.58 0.38 0.65 1.81 1.17 

σ 0.32 0.71 0.47 0.36 0.33 0.2 0.44 1.66 0.9 

 

Table 9 lists the differences of 15 cases, and their minimum and maximum values, 

mean (μ) and the standard deviations (σ) of the displacements of comparing the 

automated landmark identification and the manual method for the modified Talairach 

landmarks AC, PC, L, R, A, P, S, I, and CBI. The differences of the AC and PC are 

calculated by: 

 ( ) ( ) ( )222 ZmZaYmYaXmXaD −+−+−=  (6.6) 
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where (Xa, Ya, Za) and (Xm, Ym, Zm) are AC or PC coordinates of automated approach 

and the ground truth values, respectively. The differences of other landmarks are the 

absolute difference value of ground truth and automatic approach. From the result table, 

no significant statistical difference was observed. 

The Talairach transformation is probably the most prevalent method for spatial 

normalization of neuroimages. It is a 3D piecewise linear operation which accuracy may 

not be good as non-linear registration or transformation methods such as iterative 

methods and boundary-based methods. However, the non-linear transformation methods 

have their own limitations and difficulties to be accepted by clinical applications. The 

major practical limitation is a prohibitive price of computational time. Comparing to the 

Talairach transformation, which can be in real time performed on a standard personal 

computer without additional memory or other accelerators, the non-linear transformation 

methods are not acceptable to process a large number of cases in a fully automatic way. 

Therefore, the Talairach transformation is still playing an important role in data-atlas 

registration because of its conceptual simplicity and anatomic nature, especially for the 

PET images.  

Since the accuracy of the Talairach transformation is generally inferior to those non-

linear transformation methods, it is helpful to improve it by adding more landmarks. The 

Talairach space is well-defined for the human cerebrum. If the additional landmark is 

within the cerebrum, the improvement may be limited too. Otherwise, if the additional 

landmark is outside the cerebrum, e.g. cerebellum, it is helpful for the applications which 

need the cerebellum scanned and processed. Theoretically speaking, if there are enough 

landmarks for linear transformation, the accuracy is close to that of non-linear methods. 
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Because of the properties of FDG-PET, computer programs face difficulties to 

identify the actual or exact positions of landmarks. They may make use of the predefined 

or known anatomical information, e.g. the normal brain size, related positions of AC and 

PC, etc. to guess or estimate the positions of landmarks. The landmarks which are robust 

to be identified are usually detected earlier than those are difficult to be determined. The 

experience shows, in FDG-PET images, the AC-PC line (APL) and superior landmark S 

are more robust to be identified than the inferior landmark and the cerebellum landmark 

due to the more noise near the regions of temporal lobes and the join of cerebellum and 

brainstem. Based on the robust-identified landmarks and anatomical information, other 

landmarks are able to be estimated to reduce the search ranges. 

The presented methods have several limitations. For MSL detection component, if the 

MSL is far away from the searching areas, e.g. rotated more than 40º from the vertical 

line or shifted more than 20 pixels from the image center, the algorithm may fail or give 

an inaccuracy results. For landmark detection, it is sensitive to the results of brain 

extraction and MSP detection from FDG-PET images. If the non-brain tissues are 

included into the brain areas, six subcortical landmarks may become farther from the 

image center. In addition, the dependency of landmarks may cause failure of other 

landmark identification. For example, if the APL is wrongly or inaccurately detected, the 

subsequent steps for AC, PC, S, I landmark detection may cause unexpected results. The 

presented method works only on the completed scan images of whole brain. If the 

cerebellum is not scanned and included, the CBI landmark may possible be wrongly 

identified superior to the landmark I, which means the failure of CBI detection. 
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6.5 Summary 

A set of the Talairach landmarks is extended to include the cerebellum into the 

Talairach space and grid system. This chapter presents a fast and fully automatic 

approach to identify those landmarks from FDG-PET images. The algorithm has been 

applied to all the cases and shown promising results. Based on these landmarks, a fast 

Talairach piecewise linear transformation is applied to warp the PET images into the 

standard Talairach space for further statistical analysis. 
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Chapter 7 

Automatic Alzheimer’s Disease 

Assessment 

This chapter addresses the process and techniques of statistical analysis including the 

stepwise regressions to assess the cognitive scores and discriminant classification to 

categorize the subjects into different groups automatically. It starts with an introduction 

of the correlation between Alzheimer’s disease (AD) diagnoses and the cognitive score 

systems as well as the functional changes on neuroimages. It explains the materials of 

experiment subjects including the normal subjects and patients with AD and mild 

cognitive impairment (MCI). Thereafter, it presents the methods to assess the cognitive 

scores of the patients and classify them with AD or MCI from normal subjects based on 

the neuroimages by statistical analysis. The chapter ends with a discussion and summary 

of the presented methods. 

7.1 Problems in Automatic AD Assessment 

As discussed in Chapter 2, currently the cognitive score systems like the mini mental 

state examination (MMSE) and clinical dementia rating (CDR) are conventional tools for 
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cognitive assessment and diagnose AD or MCI. The diagnosis is time-consuming and 

subjective, and needs professional knowledge as well. Many research papers 

demonstrated that the scores are correlated with the changes on structural and functional 

neuroimages of AD-specific structures or regions. Neuroimaging techniques provide the 

possibility to investigate the human brains in vivo by visual inspection or quantitative 

analysis of brain structures with computer technologies. Computed tomography (CT) and 

magnetic resonance imaging (MRI) are widely used imaging tools to discover and 

compare the structural changes and assist disease diagnosis. However, for 

neurodegenerative diseases like AD, the structural changes of an affected brain are too 

subtle to be visible or detected on the CT or MRI images at the initial stage of the disease. 

Positron emission tomography (PET) provides the information about blood flow or 

metabolism during the scanning in any part of the brain. The hypometabolism is observed 

in several regions of the brain in AD or MCI. 

It is a challenging task to build a relationship quantitatively between the changes on 

neuroimages and the cognitive scores, due to the multiple impacts of cognitive scores 

such as language, orientation, etc. as well as the multiple factors of neurological changes 

of the brain such as structure atrophy, brain cell hypometabolism, etc., shown in Figure 

53. For instance, the atrophy of the hippocampus may cause memory problem of a patient 

and have lower MMSE scores than those of normal subjects. But it is difficult to 

determine which factors in the MMSE score system and how many percent of the scores 

are affected. For a large number of cases which have both cognitive scores and the 

changes on neuroimages, statistical analysis is a feasible solution to build the correlation 

and establish the relationship between them by constructing several equations or 

functions. In the next sections, the methods of automatic cognitive assessment and 

diagnosis classification are presented. The regression equations were constructed from the 
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stepwise regressions to assess the cognitive scores, and the discriminant functions were 

generated from the step of the discriminant classification to diagnose AD or MCI.  

 
Figure 53. Correlations between cognitive scores and neurological changes 

7.2 Experiment Subjects 

The proposed methods are evaluated with a total of 400 experiment subjects 

introduced in Chapter 3. Each case consists of four parts of information: 1) personal 

information, 2) cognitive scores, 3) assessment or diagnosis result, and 4) FDG-PET 

volumetric images. 

Personal Information 

The personal information contains the patient identity (ID), date of birth, date of 

study, gender, etc. Only the information of gender and age is included in our study. There 

are 274 males and 126 females; their average age at study day is 76.9 years old, and the 

standard deviation of the ages is 6.5 years old, i.e. 76.9 ± 6.5. 

Neurological changes: 

- Brain atrophy 

- Structure atrophy 

- Brain cell hypometabolism 

- …… 

MMSE consists of 5 elements: 

- Orientation 

- Registration 

- Attention and calculation 

- Recall 

- Language and praxis 

Correlations ? 



 140

Cognitive Scores 

Most of the subjects were evaluated with several cognitive score systems including 

MMSE, CDR, functional assessment questionnaire (FAQ), and neuropsychiatric 

inventory (NPI). The MMSE scores (26.3 ± 3.5) and CDR scores (0.5 ± 0.4) are included 

into our study because of their widespread use in clinical diagnosis of AD and MCI. 

Assessment or Diagnosis Results 

All of the subjects had been clinically assessed as cognitively normal (122 subjects or 

30.5%) or diagnosed with AD (66 subjects or 16.5%) or MCI (212 subjects or 53%). The 

evaluation of the proposed methods is based on these assessment and diagnosis results as 

gold standard. 

FDG-PET Images 

The FDG-PET images have a grid of 160×160×96 voxels with the voxel size 

1.5×1.5×1.5 mm3. The preprocessed images have their horizontal axis paralleled with the 

anterior commissure and posterior commissure (refer to Chapter 3 for more details of the 

FDG-PET images). 

7.3 Automatic AD Assessment Methods 

Figure 54 shows the flowchart of the proposed approach. It is an atlas-assisted region-

of-interest (ROI) approach to automatically extract the AD-specific structures from brain 

images for statistical analysis by making use of the FDG-PET images and the AD-

specific brain atlas. It consists of the following components: grouping of template cases 
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and validation cases, atlas-based image data processing, and statistical analysis including 

correlation validation, cognitive score regression, and diagnosis classification. 

 

Figure 54. Flowchart of cognitive assessment and AD/MCI diagnosis 

7.3.1 Data Grouping 

All cases are randomly divided into two groups: template (GTL) and validation 

(GVD), as listed in Table 10. The GTL cases are used to generate the regression 

equations for MMSE and CDR by the statistical model of stepwise regression based on 

the glucose metabolism values extracted from the AD-specific structures of FDG-PET 

images. In addition, the GTL cases are also applied to generate the discriminant functions 

by the statistical model of discriminant classification based on the score values of MMSE 

or CDR. The functions are calculated on each case for the classification of the groups: 

Image data processing 

Cognitive 
scores 

Experiment 
subjects 

Diagnosis 
outcomes 

Statistical analysis: 
- Correlation validation 
- Cognitive score regression 
- Diagnosis classification 

Data grouping 

AD-specific 
brain atlas 

Template Cases (GTL) Validation Cases (GVD) 
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AD, MCI, or Normal (NL). The GVD cases are for testing purpose only to verify the 

regression equations and discriminant functions. 

Table 10. Groups of template and validation cases 

 Total* AD** MCI** NL** 

GTL 250 38 (15.2%) 133 (53.2%) 79 (31.6%) 

GVD 150 28 (18.7%) 79 (52.7%) 43 (28.7%) 

Total 400 66 (30.5 %) 212 (53%) 122 (16.5%) 

* The number of cases in the data groups GTL and GVD 

** The number of cases in the diagnostic groups with percentages 

7.3.2 Image Data Processing 

This component is to extract the glucose metabolism information from the brain 

images for statistical analysis. It has two steps: spatial normalization and intensity 

normalization. Based on the algorithms introduced in Chapter 5 and Chapter 6, the spatial 

normalization is done by three sub-steps: 1) the brain areas are segmented from the PET 

images by a threshold which is selected by a histogram graph automatically (refer to 

Chapter 5); 2) the set of landmarks is accurately defined in the atlas space and 

automatically detected on PET images (refer to Chapter 6); and 3) the brain is divided 

into 18 cubic regions based on the landmarks, and a piecewise linear transformation is 

applied to generate a new volumetric image data fitting into the atlas space (refer to 

Chapter 4). Figure 55 shows an example of the results of spatial normalization. Figure 

55a is an original axial slice for example; Figure 55b shows the landmarks identified and 

marked on the axial slice of Figure 55a; Figure 55c is the result of transformation of 

images into the atlas space; and Figure 55d is a merged view of the PET image and 

warped atlas image. 
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(a) 

(b) 

(c) 
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(d)  

Figure 55. An example of spatial normalization steps 

(a) original axial slice; (b) slice with landmarks identified and marked; (c) slice transformed 

to the atlas space; (d) transformed slice with atlas warped 

 

For the intensity normalization, since the cerebellum is well preserved in AD, it is 

selected as the reference region to normalize the other areas including the hippocampus, 

amygdala, and their adjacent structures. To reduce the partial volume effect of the 

connected areas of different brain structures, the pixels with the highest and lowest 25% 

intensity values are excluded to calculate the average intensity. 

A total of 400 cases with a resolution of 160×160×96 voxels of size 1.5 mm3 were 

processed. The average processing time was 12.4 seconds per case. Table 11 lists the 

results of image data processing, including the normalized glucose metabolism values for 

all 14 AD-specific structures (the cerebellum is excluded due to its role of reference for 

normalization). The mean values with the standard deviations (SD) are shown for 

different groups AD, MCI, and NL, respectively. Based on t-test of independent samples, 

there are significant differences in several variables, e.g. the amygdala (AM), between the 

groups of AD/MCI, MCI/NL, and AD/NL, shown in Table 11. Also, several variables 
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like the globus pallidus medial (GPM) do not have significant differences between the 

groups of AD/MCI, even though the significant differences are shown between the groups 

of MCI/NL and AD/NL. 

Table 11. Normalized average glucose metabolism of AD-specific structures 

Normalized average values (mean ± SD) Significances (p) AD-specific 

structures AD MCI NL AD/MCI MCI/NL AD/NL 

AM 0.68 ± 0.10 0.76 ± 0.10 0.87 ± 0.11 < 0.001 < 0.001 < 0.001 

AG 0.81 ± 0.19 0.96 ± 0.17 1.05 ± 0.19 < 0.001 < 0.001 < 0.001 

FG 0.80 ± 0.09 0.82 ± 0.11 0.88 ± 0.11 0.333 < 0.001 < 0.001 

GPL 0.77 ± 0.09 0.77 ± 0.10 0.83 ± 0.19 0.061 < 0.001 < 0.001 

GPM 0.80 ± 0.10 0.83 ± 0.13 0.90 ± 0.20 0.896 < 0.001 0.009 

HC 0.71 ± 0.14 0.81 ±0.12 0.90 ± 0.14 < 0.001 < 0.001 < 0.001 

ITG 0.58 ± 0.19 0.60 ±0.19 0.71 ± 0.21 0.655 < 0.001 < 0.001 

IL 0.91 ± 0.08 0.94 ± 0.09 1.07 ± 0.13 0.002 < 0.001 < 0.001 

MTG 0.80 ± 0.15 0.88 ± 0.11 0.98 ± 0.12 < 0.001 < 0.001 < 0.001 

PG 0.56 ± 0.09 0.60 ± 0.10 0.72 ± 0.11 0.002 < 0.001 < 0.001 

PU 1.11 ± 0.15 1.14 ± 0.15 1.23 ± 0.21 0.075 < 0.001 < 0.001 

STG 0.85 ± 0.09 0.89 ± 0.09 0.96 ± 0.10 0.001 < 0.001 < 0.001 

SG 0.84 ± 0.16 0.94 ± 0.15 0.99 ± 0.17 < 0.001 0.007 < 0.001 

TH 0.82 ± 0.21 0.91 ± 0.19 0.99 ± 0.19 0.001 0.001 < 0.001 

7.3.3 Statistical Analysis 

The statistical analysis is performed on the GTL cases. It is based on the personal 

information, cognitive scores, clinical diagnosis result, and the glucose metabolism data 

extracted from the AD-specific structures (refer to Chapter 3 for the definition). It 

includes: 1) the correlation validation of cognitive scores with the AD-specific structures 

as well as the other variables like age and gender; 2) the stepwise regressions of cognitive 

scores based on the variables with top correlative values; and 3) discriminant 

classification of AD, MCI, and NL. The above statistical models are calculated by the 
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Statistical Package for Social Sciences (SPSS), version 16.0. The regression equations 

and classification functions are validated with the GVD cases by substituting the 

normalized average values of AD-specific structures into them to calculate the regressed 

cognitive scores and classified results.  

Data Table 

A data table is created to include all relevant information together for easier 

calculation by SPSS. The variables in the table consist of four types: 1) personal 

information including case ID, gender, and age; 2) cognitive scores including MMSE and 

CDR; 3) diagnosis results; and 4) the normalized average glucose metabolism of all AD-

specific structures. An example of AD case is shown at the right-most column of Table 

12. It is also used as an example for illustration of cognitive assessment and diagnosis 

classification in the subsequent sections. This 69.7 years old man was diagnosed as AD 

patient (diagnosis value is 1) at the day of study. His MMSE score was only 15 (< 17, 

refer to Appendix A) and his CDR score was as high as 2 (> 1, refer to Appendix B) at 

that day. The glucose consumption values of several structures such as the PG, AM, and 

HC have obvious reduction comparing to those of other structures like the PU (see Table 

12 for abbreviations). 
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Table 12. Data table with descriptions and example 

Variable 

Types 

Variables 

Names 

Short 

Names 
Descriptions Example 

CaseID  Unique ID for each subject 104005 

Gender  Male (1) or Female (2) 1 
Personal 

Information 
Age  Age at the day of study 69.7 

MMSE  Score at the day of study 15 Cognitive 

Scores CDR  Score at the day of study 2 

Diagnosis Diagnosis  AD (1), MCI (2), or NL (3) 1 

Amygdala AM 0.58 

Angular gyrus AG 0.65 

Fusiform gyrus FG 0.71 

Globus pallidus lateral  GPL 0.86 

Globus pallidus medial GPM 0.84 

Hippocampus HC 0.58 

Inferior temporal gyrus ITG 0.64 

Insular lobe IL 0.87 

Middle temporal gyrus MTG 0.78 

Parahippocampal gyrus PG 0.50 

Putamen PU 1.19 

Superior temporal gyrus STG 0.79 

Supramarginal gyrus SG 0.71 

Average 

Glucose 

Metabolism 

Thalamus TH 

Normalized average intensity 

values to the cerebellum 

0.63 

 

Correlation Validation 

The correlation test of all variables in Table 12 is based on bivariate correlation by 

calculating the Pearson’s product-moment correlation coefficient. It is widely used in 

testing the linear dependence between two variables by giving a value between -1 and +1, 

and typically denoted by R.  
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where xi and yi are the sample values of two testing variables, x̄ and ȳ  are the mean 

values of the variables. 

It is defined as the covariance of the two variables divided by the product of their 

standard deviations. The variables with higher R values, and also significant to the 

MMSE and CDR (p < 0.01), are selected as the independent variables for the stepwise 

regressions for MMSE and CDR. 

Table 13. Correlation test between cognitive scores and independent variables  

MMSE CDR 
Variables 

R p 
Variables 

R p 

AM 0.608 < 0.001 AM -0.591 < 0.001 

MTG 0.596 < 0.001 MTG -0.566 < 0.001 

HC 0.578 < 0.001 IL -0.555 < 0.001 

AG 0.547 < 0.001 HC -0.497 < 0.001 

STG 0.543 < 0.001 PG -0.496 < 0.001 

IL 0.491 < 0.001 STG -0.490 < 0.001 

SG 0.472 < 0.001 AG -0.457 < 0.001 

PG 0.445 < 0.001 SG -0.406 < 0.001 

TH 0.437 < 0.001 TH -0.356 < 0.001 

PU 0.328 < 0.001 FG -0.329 < 0.001 

GPM 0.243 < 0.001 PU -0.328 < 0.001 

FG 0.238 < 0.001 ITG -0.308 < 0.001 

ITG 0.238 < 0.001 GPM -0.235 < 0.001 

GPL 0.110 0.083 GPL -0.212 0.001 

Gender -0.087 0.170 Age 0.110 0.083 

Age -0.124 0.05 Gender 0.031 0.629 
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In order to validate the correlations between the change of brain structures and the 

cognitive scores, Table 13 lists the Pearson correlation (R) and significant (p) values for 

both MMSE and CDR by descending sort of R. It shows that the variables gender and age 

are not significantly correlated with the cognitive scores; and the other variables of brain 

structures are more or less correlated with the scores. For a more detailed analysis, the top 

eight common variables of both MMSE and CDR in Table 13 are chosen as the most 

correlated brain structures with cognitive scores MMSE and CDR. They are the AM, 

MTG, HC, AG, STG, IL, SG, and PG. 

Regressions of Cognitive Scores 

In statistics, linear regression refers to an approach to modeling the relationship 

between one dependent variable y and one or more independent variables X (x1, x2, … xn), 

by linearly estimating the unknown parameters from the sample data. This approximate 

relationship is modeled through a y-intercept constant C that adds adjustment to the linear 

relationship between the dependent variable y and independent variables X. 

 Cxp...xpxpy nn ++++= 2211  (7.2) 

where (p1, p2, … pn) are the unknown parameters to be estimated from the a set of sample 

data. 

Linear regression is used extensively in many practical applications such as 

prediction. It can be used to fit a predictive model to an observed data set of y and X 

values. After developing such a model, if an additional value of X is then given without 

its accompanying value of y, the fitted model can be used to make a prediction of the 

value of y.  
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In our research, it is a prediction model to predict the MMSE or CDR scores by using 

the glucose metabolism values extracted from the PET images. The purpose of stepwise 

regressions of MMSE and CDR is to generate the regression equations, which would be 

used to estimate the cognitive scores for any existing or new case(s). The regression 

operation in SPSS needs to define one dependent variable and several independent 

variables. The dependent variable for MMSE regression is the MMSE score, and the 

dependent variable for CDR regression is the CDR score. The independent variables (also 

called “predict variables”) are those most correlated structures selected from the AD-

specific structures by the previous step “Correlation Validation”. 

The stepwise regression repeatedly chooses the predict variables (one or more of 

correlated structures) automatically to generate the regression equations by taking a 

sequence of analysis of variance (ANOVA) test for the equation and t-test for the 

independent variables. The outcome of the stepwise regression is a list of coefficients 

corresponding to the predict variables, and a constant as well. Those coefficients and the 

constant construct a linear equation for MMSE, if the dependent variable is the MMSE 

score. The CDR regression equation can be generated in the same way. 

Table 14. Stepwise regressions of MMSE and CDR 

 Steps R2 Adjusted R2 F Significant (p) 

1 0.370 0.368 145.775 < 0.001 

2 0.474 0.469 111.110 < 0.001 

3 0.526 0.520 90.924 < 0.001 

4 0.543 0.535 72.699 < 0.001 

MMSE 

5 0.554 0.545 60.712 < 0.001 

1 0.349 0.347 133.208 < 0.001 

2 0.438 0.433 96.070 < 0.001 

3 0.456 0.449 68.647 < 0.001 
CDR 

4 0.474 0.465 55.170 < 0.001 
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The stepwise regressions for MMSE and CDR are shown in Table 14. Their 

progresses are stopped after five and four steps of regressions for MMSR and CDR, 

respectively. This means the stepwise regressions have five/four steps to enter one 

predicting variable by each step. In Table 14, R2 is simply the square of the sample 

correlation coefficient between the outcomes and their predicted values. Adjusted R2 is a 

modification of R2 that adjusts for the number of explanatory terms in a model. Unlike R2, 

the adjusted R2 increases only if the new term improves the model more than would be 

expected by chance. The adjusted R2 can be negative, and will always be less than or 

equal to R2.  

Table 15. Stepwise regression equation coefficients for MMSE and CDR 

 Predictive Variables Coefficients* t-values Significances (p) 

AM 11.57 6.097 < 0.001 

MTG 13.53 7.742 < 0.001 

AG 7.67 6.485 < 0.001 

STG -8.14 -2.745 0.007 

IL -5.33 -2.525 0.012 

MMSE 

(Constant)** 10.22 6.788 < 0.001 

AM -1.34 -5.973 < 0.001 

MTG -1.46 -6.573 < 0.001 

AG -0.61 -3.961 < 0.001 

STG 1.14 2.912 0.004 

CDR 

(Constant)** 2.39 12.681 < 0.001 

* The coefficients of each predictive variable in linear equations 

** The constant values in linear equations 

Table 15 lists the coefficients for each predict variable as well as the constants of 

regression equations. For example, the MMSE regressions have five predict variables: 

AM, MTG, AG, STG, and IL. The linear regression equation for calculation of cognitive 

MMSE scores (Rm) is constructed from these coefficients and the constant. 

221033514867753135711 .IL.STG.AG.MTG.AM.Rm +×−×−×+×+×=  (7.3) 
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For CDR, the linear regression equation for calculation of CDR scores (Rc) is 

similarly constructed from four coefficients of predict variables AM, MT, AG, and ST. 

392141610461341 .STG.AG.MTG.AM.Rc +×+×−×−×−=  (7.4) 

For the example in Table 12, AM=0.58, MTG=0.78, AG=0.65, STG=0.79, and 

IL=0.87, the calculation results of regressed MMSE (Rm) and regressed CDR (Rc) are 

21.41 and 0.97 by equation (7.3) and (7.4), respectively. 

Classification of AD, MCI and NL 

Classification is a machine learning procedure in which individual items are placed 

into groups based on quantitative information on one or more characteristics of the items. 

The goal of classification is to build a set of models that can correctly predict the class of 

the different objects. The classification methods such as discriminant analysis and 

artificial neural network have the advantages over the clustering methods such as k-mean 

and fuzzy c-mean. The key advantage is that they have an explicit knowledge of the 

classes the different objects belong to. Those algorithms can perform an effective feature 

selection and lead to better prediction accuracy. 

Classifier performance depends on the characteristics of the data to be classified. 

There is no single classifier that works best on all given problems. The commonly used 

classification algorithms include logistic regression, artificial neural networks, 

discriminant analysis, etc. Logistic regression is used for prediction of the probability of 

occurrence of an event by fitting data to a logistic curve. It is a generalized linear model 

used for binomial regression. Artificial neural networks are parallel computing devices 

consisting of many interconnected simple processors. Each processor in the network is 

simple and only for a single task. However, the whole network becomes quite 
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complicated for computation and difficult to setup to produce good results [Harper, 2005]. 

Discriminant analysis builds a predictive model for group membership. The model is 

composed of discriminant functions based on linear combinations of the predictor 

variables that provide the best discrimination between the groups. The functions are 

generated from a sample of cases for which the group membership is known. The 

functions can then be applied to new cases that have measurements for the predictor 

variables but have an unknown group membership. The Fisher’s linear discriminant 

analysis model is matched well to our requirements to predict the group membership of 

experiment subjects. 

To classify the experiment cases into the groups of AD, MCI, and NL, the Fisher’s 

linear discriminant analysis is applied to generate the discriminant functions by 

calculating the Fisher’s coefficients of all predict variables. For discriminant 

classification in SPSS, the grouping variable is the diagnosis results, i.e. AD, MCI, and 

NL. In order to determine whether the most-affected structures by AD are supposed to be 

included as the predict variables for Fisher’s linear discriminant analysis, two situations 

are considered: 1) only use the cognitive scores as a single input (Method A); and 2) use 

both the cognitive scores and the normalized average intensity values of the correlated 

structures as the input (Method B). The outcome of discriminant classification analysis 

contains several discriminant function coefficients that can be used directly for 

classification. As the grouping variable has three values (AD, MCI, and NL), three sets of 

coefficients of predict variables are obtained for each group. The testing case is assigned 

to the group for which it has the largest discriminant score. 

There is only one predict variable for Method A. It is regressed MMSE (Rm) or 

regressed CDR (Rc) for MMSE scores or CDR scores as shown in Table 16. For Method 
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B, there are two additional predict variables IL and PG for MMSE scores and three 

additional predict variables AG, IL, and PG for CDR scores. Each variable has its 

coefficient to construct discriminant functions with a constant for each function. The 

coefficients of the predict variables and the constants are listed in Table 16. For each 

method, there are three functions to discriminate one group from others. For example, the 

functions of MMSE for Method A are described by equation (7.5), and the functions for 

Method B are described by equation (7.6). 
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The functions of CDR for Method A are described by equation (7.7), and the 

functions for Method B are described by equation (7.8). 
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For the case in Table 12 IL is 0.87, PG is 0.50, and Rm is 21.41, equation (7.6) gives 

the results of Method B: MBAD=74.19, MBMCI=71.77, and MBNL=61.65. As the maximum 

value of three variables is MBAD, the subject is classified as a patient with AD. 
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Table 16. Discriminant function coefficients for classification 

Scores Methods Variables AD* MCI* NL* 

Rm 6.528 7.256 8.010 
A 

(Constant)** -76.945 -94.790 -115.272 

Rm 5.251 6.004 6.483 

IL 51.914 49.968 57.139 

PG 8.356 9.544 17.599 

MMSE 

B 

(Constant)** -87.634 -105.019 -130.517 

Rc 18.549 12.431 4.648 
A 

(Constant)** -8.484 -4.415 -1.562 

Rc 126.267 121.667 117.299 

AG 112.512 119.104 120.618 

IL 125.354 117.531 122.058 

PG 165.203 171.385 179.793 

CDR 

B 

(Constant)** -198.006 -197.103 -207.104 

* The coefficients of each predictive variable in linear equations 

** The constant values in linear equations 

Success Rate 

Before verification of the results, a variable named success rate is defined to 

quantitatively measure the degree of the successful diagnosis. The success rate is defined 

as a ratio of the number of successful classified cases automatically by the number of 

cases clinically diagnosed in that category.  

 ( )
)N(

),A(,,eSuccessRat
c
 c, smscm =  (7.9) 

where m is the method used (Method A or Method B), c is the subject category (AD, MCI, 

or NL), s is the score system (MMSE or CDR), A(m,c,s) is the number of cases which are 

classified as the category c by the method m with score system s. N(c) is the number of 

cases which are clinically classified as the category c. For example, if there are 38 AD 
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cases in the group GTL, and the number of cases which were classified as AD by Method 

A is 29, the success rate of Method A for AD diagnosis is 29/38, i.e. 76.3%. 

Result Verification 

The regression equations and discriminant functions obtained by the statistical 

models need to be verified by all the GTL cases as well as the GVD cases. It is done by 

substituting the normalized average values of AD-specific structures into the regression 

equations to calculate the regressed cognitive scores, and into the discriminant functions 

to classify the testing cases into different diagnosis groups of AD, MCI, and NL. 

For each testing case, the normalized average intensity values of AD-specific 

structures are the input for both stepwise regression and discriminant classification. They 

are applied to calculate the regressed values of MMSE and CDR first for cognitive 

assessment. Thereafter, the discriminant values are computed based on the regressed 

values of MMSE and CDR. To measure the accuracy of the classification methods, a 

success rate is defined to quantify for each statistical method, each group of cases, and 

each category of subjects.  

The final classification results are given in Table 17 and Table 18, including 250 

GTL cases and 150 GVD cases. For GTL cases, the average success rates of Method A 

are 62.8% and 62.4% by the regressed-MMSE and regressed-CDR, respectively; the 

average success rates of Method B are 65.6% and 69.2% correspondingly. For GVD 

cases, the success rates of Method A are 52% and 56.7%, and those of Method B are 

61.3% and 60.7% by the regressed-MMSE and regressed-CDR. 

There are several observations on the classification results of Table 17 and Table 18. 

More discussions are given in the next section. 
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• The success rates of Method B are higher than those of Method A for both 

MMSE and CDR scores and for both groups of GTL and GVD as well. However, 

the sensitivity (SN), specificity (SP), and Dice’s index (DI) in Table 18 shows no 

major difference between two methods. 

• The success rates of MCI patients are much lower than those of AD patients and 

NL subjects in each method and each group of cases. The sensitivities of MCI 

patients are also much lower than those of AD patients and NL subjects for GTL 

cases. 

• The success rates as well as the sensitivities of GVD cases are lower than those of 

GTL cases. 

• The success rates of different score systems show no major difference. In other 

words, both MMSE and CDR are appropriate to present the cognition impairment 

 

Table 17. Classification results with success rate 

Groups Scores Methods AD (%)* MCI (%)* NL (%)* Total (%)* 

Number of Cases** 38 133 79 250 

A 29 (76.3) 64 (48.1) 64 (81.0) 157 (62.8) 
MMSE 

B 28 (73.7) 73 (54.9) 63 (79.7) 164 (65.6) 

A 28 (73.7) 64 (48.1) 64 (81.0) 156 (62.4) 

GTL 

CDR 
B 32 (84.2) 77 (57.9) 64 (81.0) 173 (69.2) 

Number of Cases** 28 79 43 150 

A 19 (67.9) 35 (44.3) 24 (55.8) 78 (52.0) 
MMSE 

B 19 (67.9) 47 (59.5) 26 (60.5) 92 (61.3) 

A 20 (71.4) 42 (53.2) 23 (53.5) 85 (56.7) 

GVD 

CDR 
B 19 (67.9) 47 (59.5) 25 (58.1) 91 (60.7) 

* The number of successful diagnostic cases with success rates by proposed approach 

** The number of diagnostic cases clinically (as gold standard) 
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Table 18. Classification results with sensitivity, specificity and Dice’s index 

Score MMSE CDR 

Category AD MCI NL AD MCI NL 

Method A* B* A* B* A* B* A* B* A* B* A* B* 

SN 76.3 73.7 48.1 54.9 81.0 79.7 73.7 84.2 48.1 57.9 81.0 81.0 

SP 81.6 81.6 80.3 78.6 81.9 87.1 81.6 84.0 78.6 82.9 82.5 86.5 GTL 

DI 54.7 53.3 58.2 63.2 73.6 76.8 53.3 61.5 57.7 67.0 74.0 77.1 

SN 67.9 67.9 44.3 59.5 55.8 60.5 71.4 67.9 53.2 59.5 53.5 58.1 

SP 83.8 82.0 67.6 71.8 72.9 85.0 84.4 81.1 64.8 70.4 80.4 86.0 GVD 

DI 56.7 55.1 51.1 64.4 50.0 61.2 59.7 54.3 57.5 63.9 52.9 60.2 

* Percentages of sensitivities, specificities, and Dice’s indices 

7.4 Discussion 

Numerous algorithms of medical image segmentation were implemented and 

presented for both structural medical images like MRI or CT, and functional medical 

images like PET. However, the segmentation of ROIs from PET neuroimages faces more 

difficulties due to the absence of boundary information in these images. Accurate 

segmentation of a particular structure from PET images automatically is almost not 

possible. Therefore, atlas-based methods have their advantages to identify several 

landmarks instead of the identification of the boundaries. The accuracy of atlas-based 

methods highly depends on that of landmark identification. The inaccurate landmark 

identification causes the inaccurate information extracted from the ROI, i.e. the 

measurement of average glucose metabolism in our research work. It is a very time-

consuming task to ensure the accuracy of the landmark identification by visual inspection 

case by case by neurological or radiological experts. 

After the fast and automatic data transformation of PET images into the atlas space, 

the information extracted from the ROIs of hundreds of cases is performed by several 
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statistical models such as correlation validation, stepwise regression, and discriminant 

classification. There are several observations on the statistical results. 

Method B is superior to Method A 

In average, the success rates of Method B are higher than those of Method A. That means 

the correlated structures are also the important factors for the discriminant classification 

even through the regressed cognitive scores are already based on these structures. 

However, there are no major differences between the methods in the sensitivities, 

specificities, and Dice’s indices. Therefore, Method B is only superior in filtering the 

particular group (e.g. AD) from the other groups. 

Success rates of MCI 

Although the experiment data have three category groups: AD, MCI, and NL, most of the 

AD cases are at mild stage. There is only a few cases (< 1%) are at moderate stage, and 

no severe AD cases at all. If the changes of glucose metabolism on the AD-specific 

structures are too subtle to be distinguished by the classification algorithm, it is a high 

possibility to classify the MCI cases into AD or NL. In addition, the calculation of 

success rates is based on the clinical diagnosis results, which may not only depend on the 

cognitive scores, but also the experience of doctors. There may have some deviation 

between the doctor’s judgment and the cognitive score. The conflicts between the 

cognitive scores and the diagnosis results are found in several cases. For example, a 

patient with 27 MMSE score was diagnosed as AD, and another case with 25 MMSE 

score was classified as normal subject. For the category of MCI, the highest MMSE score 

of MCI patients is 30 and the lowest is only 19, but both of them were diagnosed as MCI. 
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In addition, the MMSE itself is not sensitive in detecting mild dementia [Crum et al., 

1993]. 

Success rates of GVD cases 

The statistical models are performed on the GTL cases, which have higher success rates 

than those of GVD cases. The regression equations and discriminant functions are based 

on an assumption that the cognitive scores such as MMSE and CDR have linear 

correlation with the changes of glucose metabolism on AD-specific structures. If the 

assumption is not always true, or the cognitive scores have correlated with the structures 

other than those we defined as AD-specific, the regression equations or discriminant 

functions may depend highly on the template data. When they are applied to the other 

data which are not the part of template cases, the success rates are dropped. 

AD-affected structures are excluded from the statistical analysis 

The hippocampus and parahippocampal gyrus are considered the firstly affected 

structures in the brain by AD. However, they are too small to be accurately segmented by 

the automatic computer algorithms. In addition, the partial volume effect may be more 

serious in those small structures than the larger structures due to the high ratio of 

boundaries of the structure by the whole structure areas.  

7.5 Summary 

In summary, the results of statistical analysis depend on several factors like the 

number of samples, statistical models, data distributions, etc. There are a few possible 

ways to increase the success rates of stepwise regressions by:  
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• adding more brain structures as the independent variables; 

• removing the noise data, for example, the cases with low MMSE but was 

diagnosed as MCI or NL and vice versa;  

• separating the left and right hemispheres for each brain structure; and  

• exploring other statistical models such as neural network and non-parameter tests. 

This chapter presents an automated atlas-assisted approach, which makes use of the 

image data processing methods and a high resolution brain atlas presented in the previous 

chapters, together with the statistical models of stepwise regressions and discriminant 

classification to assess the cognitive scores and distinguish the patients with AD or MCI 

from normal subjects. The approach has been applied to hundreds of cases and shown 

promising results. For template cases, the average success rates are 65.6% and 69.2% by 

Method B with MMSE scores and CDR scores, respectively. For validation cases, the 

average success rates are 61.3% and 60.7% by Method B with MMSE scores and CDR 

scores. This is the first effort to quantitatively calculate the cognitive scores by processing 

the neuroimages automatically. There are still some rooms to improve the success rates of 

the diagnosis. 
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Chapter 8 

Research Summary and Future 

Directions 

This chapter summarizes the work in this thesis and discusses the future research 

directions. 

8.1 Research Summary 

This thesis investigates the problems of current clinical cognitive assessments and 

diagnosis for Alzheimer’s disease (AD) as well as the mild cognitive impairment (MCI), 

and presents a rapid and fully automatic way to assist the assessment of cognitions and 

diagnosis of the disease. Currently the diagnosis is based on the evaluation of medical 

history and the assessment of cognitive scores like mini mental state examination (MMSE) 

and clinical dementia rating (CDR). The scores are influenced by several factors like 

language, education levels, etc. Therefore, the conventional way of AD and MCI 

diagnosis has the following problems: is subjective, time-consuming, and inaccurate. In 

addition, it is usually very costly because only experienced professionals are capable of it. 

The approach presented in this thesis provides an objective and efficient way for the 
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cognitive assessment and the diagnosis of the patients with AD or MCI, by processing the 

neuroimages based on the AD-specific brain atlas automatically and analyzing the 

outcomes of image processing with several statistical models. It is fully automatic and 

shows the promising success rates to distinguish the AD patients from the normal subjects 

in a rapid and useful way to reduce the expensive cost by the computer programs. 

The accuracy of cognitive assessment and diagnosis highly depends on that of image 

processing results, including the brain segmentation and registration with the atlas space. 

To extract the accurate glucose metabolism information from the positron emission 

tomography (PET) images, a high resolution three-dimensional brain atlas was 

constructed to meet the requirements. It has the anatomical structures of the human brain 

accurately segmented and labeled by an interactive platform with several advanced tools 

such as interactive semi-automatic segmentation tool, powerful contour editor, and user 

friendly visualization tool for two-dimensional images and three-dimensional objects. 

The atlas labels the AD-specific regions such as the amygdala, hippocampus, and 

temporal lobe. It also accurately positions the cortical landmarks as well as the internal 

landmarks such as the anterior commissure and posterior commissure. The landmarks 

play a key role in PET image registration with the atlas space, and the accuracy of the 

landmark identification on the PET images affects that of the image registration. 

The automated method of the landmark identification on the PET images has several 

steps. After the brain is extracted from the volumetric images by the algorithms of 

thresholding and region growing, the left and right brain hemispheres are separated by a 

midsagittal plane which is calculated from a group of midsagittal lines on axial slices. 

Nine landmarks are defined and identified on PET images automatically: anterior 

commissure and posterior commissure (AC and PC), left and right extents of the cortex 
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(L and R), anterior and posterior extents of the cortex (A and P), interior and superior 

extents of the cortex (I and S), and cerebellum inferior (CBI). 

After the registration of the PET images with the atlas space, the intensity values of 

every region can be obtained and calculated to be the input of the statistical models for 

further analysis. The values of each region are normalized to avoid the variation of image 

scanning with different scanners and different parameters. The glucose metabolism 

information of different regions or structures together with the personal information of 

subjects such as age and gender is combined together for statistical analysis. The data 

extracted from the AD-specific structures are the independent variables to be calculated 

in different statistical models such as correlation validation, stepwise regressions, and 

discriminant classification. The correlation validation is to test the correlation between 

these independent variables and the cognitive scores in order to exclude the variables 

which are not or less correlated. The top correlated variables are then applied to the 

stepwise regressions to construct the regression equations for calculation of the cognitive 

scores. Any individual subjects with FDG-PET scanning are initially and automatically 

evaluated for the cognitive impairment. Based on the cognitive scores as well as the top 

correlated variables (AD-specific structures), the subject is diagnosed as AD, MCI, or 

Normal. 

The algorithms presented in this thesis include the brain extraction from neuroimages, 

landmark identification on PET images, and spatial and intensity normalization of PET 

images. They are all fully automatic and have high accuracies by validation with the 

ground truth manually generated by the neuroanatomy expert. The algorithms gave the 

promising results by testing hundreds of cases. There are several novel research 

contributions in this thesis. They are 1) a platform with several powerful and intelligent 
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tools for a new digital brain atlas construction and other neuroimage processing, the atlas 

has accurate brain structures segmented and labeled including the AD-specific structures, 

3) algorithms for automated brain extraction from structural and functional neuroimages, 

4) a set of landmarks is extended to include the cerebellum into the atlas space, 5) 

automatic landmark detection on PET volumetric data, and 6) an assessment method to 

evaluate and diagnose the experiment subjects.  

In summary, a rapid and automated valuation method is presented in this thesis for 

cognitive assessment and diagnosis of AD and MCI, and it shows the promising results 

for both image processing and statistical analysis by comparing with the traditional 

approach. Chapter 4 presents a new brain atlas constructed by a set of interactive and 

intelligent construction tools. The atlas contains accurate information of AD-specific 

structures. Chapter 5 discusses the design and implementation of the automated brain 

extraction methods from neuroimages including structural CT images and functional PET 

images. The brain areas are segmented from the neuroimages automatically for further 

processing in the subsequent steps. Chapter 6 extends the Talairach landmarks to include 

a new landmark for more accurate transformation of PET images into the standard 

Talairach space. The AD-specific structures are segmented from the PET images and then 

analyzed statistically to generate the discriminant functions to assess the cognitive scores 

in Chapter 7.  

8.2 Future Directions 

There are two directions for future work: 1) to make the presented method more 

powerful, which means to increase the accuracy of image processing algorithms as well 
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as the results of statistical analysis; 2) to build an extendable platform to extend the 

research to other dementias and neurodegenerative diseases, or even other applications. 

8.2.1 Accuracy Improvement 

There are several ways to possibly enhance the presented approach: 1) to make use of 

the data and diagnosis results to add more cases to participate the statistical analysis; 2) to 

enhance the accuracy of the image processing algorithms; and 3) to consider more 

sophisticated statistical analysis models. 

Post-processing of Diagnosis Results 

The outcome of cognitive assessment and disease diagnosis could be post-processed 

manually as shown in Figure 56. If the computer-generated diagnosis results are same to 

those by the clinicians manually, the subjects with new assessment scores and diagnosis 

results can be included into the template cases to generate more accurate regression 

equations and discriminant functions. Otherwise, if the automatic results are different 

from those of manually generated by professionals, the further analysis may be required 

to find out the possible reasons, e.g. the image processing algorithms give an inaccurate 

result. If there is no reasonable ground for the failure, it is possible to explore more AD-

related findings. 
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Figure 56. Post-processing of diagnosis results 

Image Processing Algorithm Enhancement 

The algorithms of image processing have some rooms for enhancement. For example, 

the partial volume effect of the images may cause inaccuracy of brain segmentation; 

linear transformation from scan images to atlas space may be inferior to the methods of 

non-linear transformation, etc. However, the computation cost must be considered too.  

More Sample Data 

Current collection of the data includes the normal subjects as well as the patients with 

AD and MCI. However, the AD patients are mostly the mild AD (MMSE > 20). There 

are very rare moderate or severe cases (MMSE < 20). Therefore, the range of scores is 

limited, and the success rates of MCI diagnosis are lower than that of AD and normal 

subjects. If the dataset contained more moderate and severe AD patients to generate the 
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regression equations and discriminant functions, the higher success rates of diagnosis 

could be expected. 

New Imaging Techniques 

The imaging techniques like PET/CT or PET/MRI dual-modality may increase the 

accuracy of brain extraction and structure segmentation as the structural neuroimages 

usually have higher contrasts and resolutions than the functional neuroimages. If the dual-

modality imaging data, including the patients with AD, MCI, as well as normal subjects, 

are available in the future, the CT or MRI image processing algorithms may be applied 

for better segmentation results than that on PET images directly. 

Other Intensity Normalization 

The glucose consumptions in brain cells are detectable in FDG-PET images. Both the 

cerebrum and cerebellum are affected, even though the cerebellum is less-affected than 

some cerebral structures. However, the brainstem or pons may not be affected by the 

disease and be applied to normalize the intensity values of other structures. 

More Brain Structures 

More brain structures, which have not been minutely studied for AD, may have 

potential values to assess the cognitive scores and diagnose the disease. The atlas-based 

ROI extraction has finer parcellation for almost all brain structures, which may be used 

for further analysis of the correlation with the disease. The non-affected structures may 

become the references for intensity normalization, and new AD-related structures may be 

discovered and become the predict variables for statistical analysis. 
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More Cognitive Score Systems 

More cognitive score systems other than MMSE and CDR may be applied to test the 

subjects, such as functional assessment questionnaire (FAQ) and neuropsychiatric 

inventory (NPI). These score systems could be compared to find out which one is more 

reliable or precise for AD computational assessment and diagnosis. 

More Statistical Models 

Currently only the linear stepwise regressions are used for the cognitive score 

regressions, and only a few predict variables participate the regression steps. More 

sophisticated statistical models such as least squares regression, non-linear regression, 

categorical regression, may be considered. In addition, other classification methods such 

as artificial neural network, clustering methods may be applied. 

8.2.2 Extendable Platform 

The proposed AD assessment and diagnosis approach is based on a set of atlas-based 

automatic image processing algorithms, a set of powerful tools, and a set of statistical 

analysis models. Figure 57 shows a diagram of the extendable platform architecture. It 

may be extended to the assessment or diagnosis of other dementia or even other 

neurodegenerative diseases, which may be built on top of these algorithms, statistical 

models, and powerful interactive tools, e.g., the other dementias like vascular dementia, 

the other neurodegenerative diseases like Parkinson’s disease.  
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Figure 57. Extendable platform for neuroimage processing and statistical analysis 

The presented approach may also be extended to the other potential applications such 

as the monitoring of disease progression, by calculating the longitudinal time series 

glucose metabolic rate of particular structures for same patient. 

We believe that the extended platform would have a great opportunity for automatic 

and objective assessment of cognitive severity and diagnosis of neurodegenerative 

diseases in scientific research as well as clinical practice. 
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Appendices 

A. Mini Mental State Examination (MMSE) 

Patient’s Name: __________________________________  Date: __________                     

Instruction: Ask the questions in the order listed. Score one point for each correct 
response within each question or activity. 
 

Maximum 
Score 

Patient’s 
Score Questions 

5  “What is the year? Season? Date? Day of the week? Month? 
5  “Where are we now: State? Country? Town/city? Hospital? Floor? 

3 

 The examiner names three unrelated objects clearly and slowly, then 
asks the patient to name all three of them. The patient’s response is used 
for scoring. The examiner repeats them until patient learns all of them, 
if possible. Number of trials: ___________ 

5 
 “I would like you to count backward from 100 by sevens.” (93, 86, 79, 

72, 65, …) Stop after five answers. 
Alternative: “Spell WORLD backwards.” (D-L-R-O-W) 

3  “Earlier I told you the names of three things. Can you tell me what 
those were?” 

2  Show the patient two simple objects, such as a wristwatch and a pencil, 
and ask the patient to name them. 

1  “Repeat the phrase: No ifs, ands, or buts.” 

3  “Take the paper in your right hand, fold it in half, and put it on the 
floor.” (The examiner gives the patient a piece of blank paper.) 

1  “Please read this and do what it says.” (Written instruction is “Close 
your eyes.”) 

1  “Make up and write a sentence about anything.” (This sentence must 
contain a noun and a verb.) 

1 

 “Please copy this picture.” (The examiner gives the patient a blank 
piece of paper and asks him/her to draw the symbol below. All 10 
angles must be present and two must intersect.) 

       
30  TOTAL 
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Instructions for administration and scoring of the MMSE 

Orientation (10 points): 
• Ask for the date. Then specifically ask for parts omitted (e.g. “Can you also tell me what 

season it is?”). One point for each correct answer. 
• Ask in turn, “Can you tell me the name of this hospital (town, country, etc.)?” One point 

for each correct answer. 

Registration (3 points): 
• Say the names of three unrelated objects clearly and slowly, allowing approximately one 

second for each. After you have said all three, ask the patient to repeat them. The number 
of objects the patient names correctly upon the first repetition determines the cores (0-3). 
If the patient does not repeat all three objects the first time, continue saying the names 
until the patient is able to repeat al three items, up to six trials. Record the number of 
trials it takes for the patient to learn the words. If the patient does not eventually learn all 
three, recall cannot be meaningfully tested. 

• After completing this task, tell the patient, “Try to remember the words, as I will ask for 
them in a little while.” 

Attention and Calculation (5 points): 
• Ask the patient to begin with 100 and count backward by sevens. Stop after five 

subtractions (93, 86, 79, 72, 65). Score the total number of correct answers. 
• If the patient cannot or will not perform the subtraction task, ask the patient to spell the 

word “world” backwards. The score is the number if letters in correct order (e.g. dlrow=5, 
dlorw=3) 

Recall (3 points): 
• Ask the patient if he or she can recall the three words your previously asked him or her to 

remember. Score the total number of correct answers (0-3). 

Language and Praxis (9 points): 
• Naming: Show the patient a wrist watch and ask the patient what it is. Repeat with a 

pencil. Score one point for each correct naming (0-2). 
• Repetition: Ask the patient to repeat the sentence after you (“No ifs, ands, or buts.”). 

Allow only one trial. Score 0 or 1. 
• 3-Stage Command: Give the patient a piece of blank paper and say, “Take this paper in 

your right hand, fold it in half, and out it on the floor.” Score one point for each part of 
the command correctly executed. 

• Reading: On a blank piece of paper print the sentence, “Close your eye,” in letters large 
enough for the patient to see clearly. Ask the patient to read the sentence and do what it 
says. Score one point only if the patient actually closes his or her eyes. This is nota test of 
memory, so you may prompt the patient to “do what it says” after the patient reads the 
sentence. 

• Writing: Give the patient a blank piece of paper and ask him or her to write a sentence for 
you. Do not dictate a sentence; it should be written spontaneously. The sentence must 
contain a subject and a verb and make sense. Correct grammar and punctuation are not 
necessary. 

• Coping: Show the patient the picture of two intersecting pentagons and ask the patient to 
copy the figure exactly as it is. All ten angles must be present and two must intersect to 
score one point. Ignore tremor and rotation. 

(Folstein, Folstein & McHugh, 1975) 
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Interpretation of the MMSE 
 

Method Score Interpretation 
Single Cutoff < 24 Abnormal 

Range < 21 
> 25 

Increased odds of dementia 
Decreased odds of dementia 

Education 
21 

< 23 
< 24 

Abnormal for 8th grade education 
Abnormal for high school education 
Abnormal for college education 

Severity 
24-30 
18-23 
0-17 

No cognitive impairment 
Mild cognitive impairment 
Severe cognitive impairment 

 
Source: 

• Crum RM, Anthony JC, Bassett SS, Folstein MF. Population-based norms for the mini-
mental state examination by age and educational level. JAMA. 1993;269(18):2386-2391. 

• Folstein MF, Folstein SE, McHugh PR. "Mini-mental state": a practical method for 
grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189-198. 

• Rovner BW, Folstein MF. Mini-mental state exam in clinical practice. Hosp Pract. 
1987;22(1A):99, 103, 106, 110. 

• Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive 
review. J Am Geriatr Soc. 1992;40(9):922-935. 



 208

 



 209

B. Clinical Dementia Rating (CDR) 

 
Parameters: 

• memory 
• orientation 
• judgment and problem solving 
• community affairs 
• home and hobbies 
• personal care 
 

Score the impairment when decline is due to cognitive loss not impairment from 

other causes. 

 

Impairment Points 
None (normal) 0 
Questionable 0.5 

Mild impairment  1 

Moderate impairment 2 

Severe impairment 3 

 

Parameter Finding Points 

No memory loss or slight inconstant forgetfulness 0 

Consistent slight forgetfulness; partial recollection of events; 
“benign” forgetfulness 0.5 

Moderate memory loss; more marked for recent events; defect 
interferes with everyday activities 1 

Severe memory loss; only highly learned material retained; new 
material rapidly lose 2 

Memory 

Severe memory loss; only fragments remain 3 

Fully oriented 0 

Fully oriented except for slight difficulty with time relationships 0.5 

Moderate difficulty with time relationships; oriented to place at 
examination; may have geographic disorientation elsewhere 1 

Severe difficulty with time relationships; usually disoriented to time 
often to place 2 

Orientation 

Oriented to person only 3 
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Solves everyday problems and handles business and financial affairs 
well; judgment good in relation to past performance  0 

Slight impairment in solving problems similarities and differences 0.5 

Moderate difficulty in handing problems similarities and 
differences; social judgment usually maintained 1 

Severely impaired in handling problems similarities and differences; 
social judgment usually impaired 2 

Judgment 
and problem 

solving 

Unable to make judgment or solve problems 3 

Independent function at usual level in job shopping and volunteer 
and social groups 0 

Slight impairment in these activities 0.5 

Unable to function independently in these activities although may 
still be engaged in some; appears normal to casual inspection 1 

Appears well enough to be taken to functions outside of the family 
home; unable to function independently outside of home 2 

Community 
affairs 

Appears to ill to be taken to function outside of family home; unable 
to function independently outside of home 3 

Life at home hobbies and intellectual interests well maintained 0 

Life at home hobbies and intellectual interests slightly impaired 0.5 

Mild but definite impairment of function at home; more difficult 
chores abandoned more complicated hobbies and interests 

abandoned 
1 

Only simple chores preserved; very restricted interests poorly 
maintained 2 

Home and 
hobbies 

No significant function in home 3 

Fully capable of self-care 0 

Needs prompting 1 

Requires assistances in dressing hygiene keeping of personal effects 2 
Personal care 

Requires much help with personal care; frequent incontinence 3 

where, in personal care there is no questionable category. 

• If unable to decide between 2 categories of impairment (“draw”) then select the higher 
impairment. 

• If aphasia is present to a greater degree than the general dementia then rate based on the 
general level of dementia based on nonlanguage cognitive function. 
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Interpretations:  
• Memory is the primary category and the other 5 are secondary. 

 

Results CDR Value 
3 to 5 secondary categories same as M M 

1 secondary categories same as M with 2 greater and 2 less M 

2 secondary categories same as M with 2 greater and 1 less M 

2 secondary categories same as M with 1 greater and 2 less M 

3 to 5 secondary categories > M 
Value for majority > M; if 

tied use value closest to M  

M = 0.5 and 3 to 5 secondary categories >= 1.0 1 

M = 0 and 2 to 5 secondary categories >= 0.5 0.5 

3 to 5 secondary categories < M 
Value for majority < M; if 

tied use value closet to M 

3 to 5 secondary categories 0 and M >= 1 0.5 

3 secondary categories > M and 2 categories < M M 

 

References:  
• Morris JC. The clinical Dementia Rating (CDR): Current version and scoring rules. 

Neurology. 1993; 43:2412-2414 
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